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The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic
modeling, simulation, anddesign. AI-drivenpotential energymodels havedemonstrated thecapability
to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure
methods. However, the model generation process remains a bottleneck for large-scale applications.
We propose a shift towards a model-centric ecosystem, wherein a large atomic model (LAM), pre-
trained across multiple disciplines, can be efficiently fine-tuned and distilled for various downstream
tasks, thereby establishing a new framework for molecular modeling. In this study, we introduce the
DPA-2 architecture as a prototype for LAMs. Pre-trained on a diverse array of chemical and materials
systemsusingamulti-task approach,DPA-2demonstrates superior generalization capabilities across
multiple downstream tasks compared to the traditional single-task pre-training and fine-tuning
methodologies. Our approach sets the stage for the development and broad application of LAMs in
molecular and materials simulation research.

Anaccurate interatomicpotential energy surface (PES) is crucial formolecular
modeling and simulations. Quantum mechanical (QM) methods, such as
density functional theory (DFT)1,2, provide satisfactory accuracy in most
applications. However, their computational complexity typically scales as the
cubicorderof the systemsize, thus limiting large-scale simulations. Incontrast,
empirical force fields (EFF) are way more efficient, but their accuracy is often
deemed insufficient for various applications. Machine learning potentials
(MLPs) have emerged as a powerful approach tomodeling complexmaterials
and molecules, bridging the gap between the high accuracy of QM methods
and the computational efficiency of EFFs. This has enabled the study of large-
scale molecular systems with QM-level accuracy across diverse applications,
including drug discovery3,4, materials design5–7, and catalysis8,9, etc.

In most MLP applications, the training data is generated from scratch
either through brute force ab initiomolecular dynamics (MD) simulations10

or by using a concurrent learning (or active learning) scheme capable of
automatically generating the most critical data for building uniformly
accurate models11–14.

In any case, DFT-calculated energies and forces are required for each
configuration in the training dataset, resulting in a substantial amount of

effort spent on constructing DFT-labeled datasets. For instance, in the
AlMgCu general-purpose ternary alloy MLP15, more than 10 million CPU
hours were spent on labeling the 141K training data points. Furthermore,
MLPs often struggle to generalize to applications not covered by the training
data5, such as when additional elements are included in materials design or
when crystal structures in a broader range of thermodynamic conditions
need to be explored.

To further extend the application range of MLPs, efforts have been
made to develop “universal” or “fundamental” models16–21, referred to as
large atomic models (LAMs), based on extensive density functional theory
(DFT)-labeled datasets. However, the technical approach still requires
further exploration, and a LAM-centric ecosystem remains to be estab-
lished. The primary factors influencing this exploration process are the
methods employed for model training and their subsequent application in
various tasks.

During the model training stage, a single-task-based training strategy,
i.e., training using consistently labeled data, remains dominant. Models
generated in this way are typically expected to be directly applicable to
downstream tasks in which the explored configurations are effectively
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covered by the training data. Some examples include models such as
M3GNet17, CHGNet19, and MACE-MP-020, which are all trained on snap-
shots from DFT relaxations of the Material Project22 structures, with
M3GNet utilizing 88 K configurations across 89 chemical species and both
CHGNet and MACE-MP-0 being trained on 1.58M inorganic crystal
frames from the concurrently introduced MPtrj dataset19; GNoME21,
trained on a dataset of inorganic crystals also starting fromMP, but nearly
two orders of magnitude larger than MPtrj; PreFerred Potential (PFP),
trained on approximately 9M frames of 45 elements16; and ALIGNN,
trained on 307 K data frames of 89 elements18.

Several limitations exist in the single-task training strategy: (1)
simultaneously trainingmultiple datasets fromdifferent application fields is
not feasible due to the variations in labeling with different DFT settings. For
instance, the MPtrj dataset, labeled by DFT calculations using PBE/PBE
+U23 exchange-correlation functional and plane-wave basis, cannot be
concurrently trained with the ANI-1× dataset, labeled by DFT calculations
using the ωB97× hybrid functional24 and an atomic basis set, thus little
possibility is left to improve the model’s generalizability on molecular
applications.

(2) The requirements of downstream tasks might be difficult to satisfy.
For instance, a taskmay require DFT accuracy at themeta-general gradient
approximation (meta-GGA) level. A model trained with GGA-level DFT
data would not be easily adapted to fulfill this requirement.

Multi-task pre-training, combined with various strategies for
downstream tasks such as fine-tuning and distillation, has emerged as a
promising alternative for the development of LAMs25–28. By employing
the multi-task training strategy29,30, it becomes possible to jointly pre-
train models using multiple datasets labeled with different DFT
settings27,31. During fine-tuning for downstream tasks, the model’s
backbone, which encodes the representation of configurational and
chemical spaces, is preserved and connected to one or multiple tasks
heads32,33. As a result, the labeling methods for pre-training and fine-
tuning datasets do not need to be identical. Furthermore, the down-
stream tasks can involve property predictions rather than PES
modeling31. This scheme offers significant flexibility in downstream tasks
and may lead to a much better generalization ability of a LAM.

Before proceeding further, let us list the requirements of a LAMthatwe
consider to be fundamental: (1) highly generalizable, (2) extensive and
respect the translational, rotational, and permutational symmetries, (3)
conservative, and (4) continuous up to second-order derivatives. A model
with high generalizability implies that when trained with the same amount
of data, themodel can achieve high accuracy34. The generalizability is critical
in pre-training LAMs, considering that the DFT-labeled data are expensive
and sparse in the configurational and chemical spaces. By conservative, we
mean that the forces (and virial tensor, for periodic systems) are calculated
by the derivatives of the model-predicted total energy of the system con-
cerning atom coordinates (and cell tensor, respectively). The conserva-
tiveness and smoothness of themodel are critical for energy conservation in
MD simulations and are thus a compulsory requirement for calculating
dynamic properties such as diffusion coefficient, viscosity, and thermal
conductivity35. The requirements (1–4) are physical restraints imposed on a
PES, thus they are necessary (but in general not sufficient) conditions for the
generalizability of the LAMs.

In this context, the primary contribution of this work is the develop-
mentofDPA-2, amulti-taskpre-trainedmodel thatmeets all thementioned
requirements and furnishes a representation suitable for a diverse array of
multi-disciplinary applications, including alloys, semiconductors, battery
materials, drug molecules, and more, while exhibiting a high degree of
generalization for downstream tasks. The revelation of a remarkable cor-
respondence between the learned representations by DPA-2 and existing
chemical knowledge underscores the potential of the proposed model
architecture and the multi-task training scheme. Furthermore, we empha-
size the importance of an open and application-oriented model evaluation
system for the molecular simulation community in the era of large atomic
models.

The following text discusses and summarizes relevant references per-
tinent to the currentwork. In recent years, therehasbeen rapiddevelopment
in MLP models. While it is nearly impossible to provide a comprehensive
list, some notable examples include the Behler–Parrinello neural network
(BPNN)36, ANI37, deep tensor neural networks (DTNN)38, weighted atom-
centered symmetry functions (wACSF)39, deep potential (DP)40–42, deep
potential with attention (DPA-1)43, and embedded atom neural network
(EANN)44. These models employ either hand-crafted or machine-learned
descriptors of atomic environments, along with deep neural networks, to
approximate potential energy. Other machine learning techniques, such as
kernel ridge regression, are alsowidely used. Examples include theGaussian
approximation potential (GAP)45, which uses a smooth overlap of atomic
positions (SOAP) measure of distance between local environments46, the
Coulomb matrix47, and gradient-domain machine learning (GDML)48.
Some potential energy models, such as the spectral neighbor analysis
method (SNAP)49 and the moment tensor potential (MTP)50, utilize linear
regression for fitting the potential energy surface (PES). Recently, there has
been a surge in the development of equivariant graph neural networks
(GNN)51,52, with examples including SchNet53, Directional Message Passing
Neural Network (DimeNet)54, Polarizable Atom Interaction Neural Net-
work (PaiNN)55, Geometric Message Passing Neural Network (GemNet)56,
SpinConv57, Spherical Channel Network (SCN)58, Neural Equivariant
Interatomic Potentials (NequIP)59, MACE60 and Equiformer/
EquiformerV261,62. These networks are based on message passing among
node and edge equivariant representations and have demonstrated pro-
misingfitting accuracy.However, it has beennoted thatGNNsare not easily
parallelizable, making them less ideal for large-scale MD simulations63.

Pre-training, or representation learning64,65, has shown significant
success across various applications, including natural language
processing30,66 and computer vision67. In the realm ofmolecularmodeling, a
primary objective of pre-trainedmodels is to learn atomic representations of
chemical species and 3D configurations of atoms.

One category of downstream tasks involves property prediction. Pre-
trained models can be trained in an unsupervised manner by recovering
masked atomic types and perturbed coordinates68–72, by undertaking gen-
erative tasks69, or by engaging in supervised learning tasks such as regression
and classification31,73–75.

Another category of downstream tasks focuses on the modeling of
PESs. The model can be pre-trained through unsupervised tasks like
denoising or chemical species restoration25,28, supervised learning of energy,
force, or partial charge27,76, or a combination of both types of tasks26.
Interestingly, most of these methods were developed for pre-training on
molecule-in-vacuum systems, thus limiting the downstream tasks to such a
class of tasks. Gardner et al.76 developed pre-trainedmodels for condensed-
phase carbon systems, but these models are unlikely to be generalizable to
systems composed of chemical elements other than carbon. Zhang et al.43

pre-trained the DPA-1 model on the OC2M dataset77 and examined its
performance on downstream tasks involving high entropy alloys and
AlMgCu ternary alloys. However, the study did not investigate downstream
tasks related to non-metallic systems.

Results
The workflow of LAM
The LAM workflow includes the phases of pre-training, fine-tuning for
downstream tasks, and knowledge distillation, as schematically presented in
Fig. 1. The LAM is constructed with a unified descriptor that encodes the
symmetry-preserving representation of the chemical and configurational
spaces of atomic systems. This descriptor is connected to the energy-fitting
networks, each predicting the energy (E) and force (F) outputs based on the
data used during the pre-training phase (see Fig. 1a).

The LAM employs a multi-task training strategy, as illustrated in Fig.
1a. Specifically, the network parameters within the unified descriptor are
concurrently optimized through back-propagation using all pre-training
datasets. In contrast, the parameters of the fitting network are updated
exclusively with the specific pre-training dataset to which they are
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associated. This approach is fundamentally different from the single-task
training paradigm, where all model parameters, encompassing those within
both the descriptor and the fitting network, are refined using a singular
training dataset. The inability to merge the pre-training datasets into a
unified “super-dataset” stems from the fact that labels across different
datasets are typically derived from DFT calculations subject to variable
conditions, such as exchange-correlation functionals, basis sets, and energy
cut-off radii, culminating in distinct PESs. We have shown that the multi-
task training is as efficient as the single-task training scheme, see section S3
of the Supplementary Materials. Therefore, multi-task training delivers the
possibility of training the atomic representation from the heterogeneously
labeled pre-training datasets. It is noted that although a hybrid multi-task
pre-training approach using both labeled and unlabeled data is technically
feasible, we focus on supervised learning for pre-training in this work, and
leave the investigation of hybrid multi-task pre-training in future studies.

The pre-trained descriptor and the fitting networks can be fine-tuned
for specific downstream PES modeling tasks, as illustrated in Fig. 1b. In the
downstreammodel, the descriptor is initializedwith the pre-trained unified
descriptor, while the fitting network may be initialized either randomly or
with afittingheadakin to theoneused inoneof thepre-training tasks.Given
that the pre-training dataset encodes the bulk of the information within the
descriptor, the initialization method for the downstream fitting network is
likely to be ofminor importance. The training dataset for a downstream task
might be pre-existing and ready for training, or it could be generated
through concurrent learning schemes such as DP-GEN14. In this study, we
present several ready-to-use downstream datasets to validate the effective-
ness of our proposed methodology and defer the exploration of concurrent
learning-based data generation to future research.

The fine-tunedmodel, while possessing a large number of parameters,
may exhibit reduced efficiency when directly applied to applications like
MD simulations. To address this concern, we propose model distillation to
create a streamlined version that retains the desired accuracy for down-
stream tasks while also enhancing processing speed and facilitating exten-
sive simulations. Figure 1c depicts the distillation procedure, which employs

an iterative learning loop. Within this framework, the original model,
henceforth referred to as the “teacher”, labels thedata. Inparallel, a “student”
model, characterized by a simplified architecture (e.g., DPA-1 without any
attention layer, which can be further compressed78 to significantly enhance
performance), is trained on this labeled data. The teacher model is then
engaged inMD exploration, operating under conditions akin to those of the
intended downstream application. This ensures that the chemical and
physical parameters encountered during both the distillation process and
the actual tasks are consistent, facilitating effective learning by the student
model. Configurations from the MD trajectories are sampled, and the stu-
dent model’s predictions are compared against those of the teacher. If the
discrepancybetween their predictions surpasses apre-established threshold,
these configurations are appended to the training set for subsequent itera-
tions. The cycle is reiterated until the student model’s predictive accuracy
eithermeets the preset standards or stabilizeswithout further improvement.

Datasets and DPA-2 descriptor
The primary goal in developing LAMs is to embed comprehensive
knowledge within the multi-task pre-trained model by leveraging the pre-
training dataset. Consequently, this embedded knowledge is anticipated to
alleviate the intensive fine-tuning process required for specific downstream
tasks. This objective necessitates two essential criteria during the pre-
trainingphase: (1)on thedata side, the pre-trainingdatasetmust encompass
a broad spectrum of chemical and configurational spaces to represent
potential scenarios in downstream applications; and (2) on the model side,
DPA-2 model pre-trained in a multi-task manner, is expected to be robust
and to exhibit a strong ability to generalize to downstream tasks, provided
that its training data meet criterion (1).

For thefirst criterion, the datasets utilized in this study are summarized
in Table 1. Detailed descriptions are provided in section S1 of the Supple-
mentary Materials. Some datasets are newly generated in this work,
including metallic alloys (Alloy), cathode materials (Cathode), metal nano-
clusters (Cluster), and drug-like molecules (Drug). Some datasets are
contributed by the DeepModeling community (https://github.com/

Fig. 1 | An overview of the proposed LAMworkflow. aThemulti-task pre-training
process, inwhich differentDFT-labeled data can be pre-trained together by sharing a
single descriptor and having their unique fitting nets, with sampling according to
their importance. This results in a unified descriptor. In this work, we have proposed
the DPA-2 architecture for the unified descriptor. b The fine-tuning process on the

downstream dataset, using the pre-trained unified descriptor and selecting a fitting
net from upstream tasks or reinitializing the fitting net for the downstream dataset.
c The distillation process uses the fine-tuned model as a teacher model, iteratively
performing MD simulations and adding labeled data to the training set to train a
high-efficiency student model, which is convenient for downstream applications.
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deepmodeling/AIS-Square/tree/main/datasets), including the ferroelectric
perovskite (FerroEle), solid-state-electrolyte (SSE), semiconductors (Semi-
Cond), H2O, metallic material datasets (e.g., Sn, AgAu and AlMgCu), and
the pyrolysis of n-dodecane (C12H26). Additionally, we have the open
catalyst 2077 (OC2M) that is formed by AIMD trajectories of molecular
chemical reactions catalyzed by metallic substrates. These datasets are
labeled with various DFT software like the VASP79,80, Gaussian81, and
ABACUS82,83. In addition, They are divided into two groups, the pre-
training and the downstream datasets, as detailed in section S1 of the
SupplementaryMaterials. It is noted that the division is only to demonstrate
the effectiveness of the workflow of LAM. For production purposes, all the
datasets listed in Table 1 should be used to pre-train an LAM.

In the last column of Table 1, weights are assigned to each pre-training
dataset. Theseweights are basedon relevance, diversity inboth chemical and
configurational spaces, and data volume. The weight of a dataset is pro-
portional to its selection probability during multi-task training, meaning
that datasets with higher weights are favored in each training iteration.
These weights also play a crucial role in calculating the weighted average of
errors across all datasets, as shown in Table 2 and Tables S2 and S3 of the
Supplementary Materials, which helps to provide an assessment of the
model’s overall accuracy.

For the secondcriterion,wepropose theDPA-2modelwith full details of
the model architecture explained in “Methods” section. The descriptor of the
model, which is supposed to encode the representation of the chemical and

Table 1 | Overview of pre-training and downstream datasets employed in the multi-task learning framework

Pre-training datasets

Name Element #Train #Test #Total Weight

Alloy 53 71,482 1240 72,722 2.0

Cathode-P Li, Na, O, Mn, Fe, Co, Cr, Ni 58,690 6451 65,141 1.0

Cluster-P Pd, Ru, Al, Au, Ag, Pt, Si, Cu, Ni 139,200 14,936 154,136 1.0

Drug H, C, N, O, F, Cl, S, P 1,379,956 24,257 1,404,213 2.0

FerroEle-P 15 6966 760 7726 1.0

OC2M 56 2,000,000 999,866 2,999,866 2.0

SSE-PBE-P Li, P, S, Si, Ge 15,019 755 15,774 1.0

SemiCond-P 14 136,867 14,848 151,715 1.0

H2O-PD H, O 46,077 2342 48,419 1.0

Ag ∪ Au-PBE Ag, Au 16,696 812 17,508 0.2

Al ∪Mg ∪Cu Al, Mg, Cu 24,252 1145 25,397 0.3

Cu Cu 14,596 770 15,366 0.1

Sn Sn 6449 276 6725 0.1

Ti Ti 10,054 474 10,528 0.1

V V 14,935 738 15,673 0.1

W W 42,297 2100 44,397 0.1

C12H26 H, C 33,898 1598 35,496 0.1

HfO2 O, Hf 27,660 917 28,577 0.1

sum 73 4,045,094 1,074,285 5,119,379 13.2

Downstream datasets

Name Element #Train #Test #Total Weight

Cathode-D Li, Na, O, Mn, Fe, Co, Cr 30,002 3244 33,246 1.0

Cluster-D Pd, Au, Ag, Pt, Cu, Ni 4218 395 4613 1.0

FerroEle-D 15 7521 597 8118 1.0

SSE-PBE-D Li, P, S, Sn 2563 131 2694 0.5

SSE-PBESol Li, P, S, Si, Ge, Sn 7502 384 7886 0.5

SemiCond-D P, N, Al, Te, In, Se, Sb, B, As 78,614 8495 87,109 1.0

ANI-1x H, C, N, O 4,872,049 83,956 4,956,005 1.0

Transition-1x H, C, N, O 7,632,328 967,454 8,599,782 1.0

H2O-DPLR H, O 557 46 603 0.5

H2O-SCAN0 H, O 7002 347 7349 0.5

H2O-PBE0TS H, O 133,000 7000 140,000 0.5

H2O-PBE0TS-MD H, O 38,000 2000 40,000 0.5

AgAu-PBED3 Ag, Au 64,239 2256 66,495 0.3

AlMgCu-D Al, Mg, Cu 113,942 2820 116,762 0.2

In2Se3 In, Se 11,621 568 12,189 0.2

Sum 39 13,003,158 1,079,693 14,082,851 9.0

The columns provide dataset name, coverage of the chemical space, number of training data points, number of test data points, the total data count, and assigned weight.
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configurational spaces of the pre-training dataset, is schematically demon-
strated in Fig. 2. The chemical and configurational spaces are represented by a
single-atom channel fi, a rotationally invariant pair-atom channel gij and a
rotationally equivariant pair-atom channel hij. The pair-atom representations
are initialized by the environment matrix (operator env in Fig. 2), which
encodes the relative positions of the near neighbors within a certain cut-off
radius (r0c and r1c ), and smoothly decays to zero at the cut-off radius. The
single-atom representations fi is initialized by a repinit (representation
initializer) layer. Then the single- and pair-atom representations are subse-
quently updated by the representation transformer (repformer) layers, which
are stacked 12 times and communicate information in a message-passing
manner between the layers. In each of the repformer layers, fi is updated by
convolution, symmetrization, MLP, and localized self-attention operators,
while gij is updated by MLP, dot-product, and gated self-attention operators
(see Fig. 2c and “The architecture of the DPA-2 model” section for more
details). The contribution of different building blocks to themodel accuracy is
investigatedbyanablation study in sectionS8of theSupplementaryMaterials.

The DPA-2model is designed to be extensible and inherently respects
translational, rotational, and permutational symmetries. Moreover, it is
conservative, as it predicts atomic forces by computing the negative gradient
of the system’s energywith respect to the atomicpositions,Fi ¼ �∇ri

E, and
calculates the virial tensor Ξαβ ¼

P
γð�∇hγα

EÞhγβ, where E represents the
energy, ridenotes the position of atom i, and hαβ is the βth component of the
αth basis vector of the simulation cell. Furthermore, all components of the
DPA-2 model are continuous up to the second-order derivative, ensuring
energy conservation. Numerical examples demonstrating the energy con-
servationproperties of theDPA-2model canbe found in the Supplementary
Material section S9.

Generalizability of the multi-task pre-trained DPA-2 model
Before moving to a discussion on the generalizability of the multi-task
training scheme, we test the model of DPA-2 by using single-task bench-
marks, which are directly comparable to the state-of-the-art model archi-
tectures. In the first benchmark, the ANI-1x dataset, the DPA-2 shows

superior test accuracy comparedwith theANI-1xmodel reported inRef. 11,
see Table S1 in the SupplementaryMaterials. In the second benchmark, the
accuracy of the DPA-2 model is comparable to GemNet-OC84 and higher
than EquiformerV262, NequIP59, Allegro63, andMACE60models on the pre-
training datasets, see Table S2 in the Supplementary Materials.

Next, we train the DPA-2model on all the pre-training datasets by the
multi-task scheme. The details of the training protocol, the test accuracy of
these datasets, and adiscussionon the effectiveness of themulti-task scheme
are given in section S3 of the Supplementary Materials. The multi-task
training introduces minimal degradation in performance on the pre-
training datasets compared to the single-task training. As reported in Table
S3, it achieves nearly the same force accuracy as single-task training, with a
WARMSE of 116.3 meV/Å compared to 111.1meV/Å for single-task
training, while it is 25% less accurate in terms of energy prediction, with a
WARMSEof 18.6meV/atomvs 14.9meV/atom in single-task training. The
representation learned by the multi-task trainedDPA-2model is visualized
and analyzed in the Supplementary Materials section S4.

We investigate the generalizability of themulti-task pre-trainedDPA-2
model to downstream tasks by testing the model directly on downstream
datasets. This approach is known as zero-shot generalization because no
data from the downstream tasks are used to refine the pre-trained model
before testing. In an ideal scenario, a perfectly generalizable model—that is,
one that encapsulates the chemical knowledge of the periodic table and all
relevant configurations for a given downstream task—would exhibit a zero-
shot generalization error comparable to, or potentially lower than, the test
error of a model specifically trained from scratch for that task.

The zero-shot generalizability of the multi-task pre-trained DPA-2
model is presented in Table 2 and compared with its single-task pre-trained
counterpart, MPtrj-trained DPA-2, and MACE-MP-0. Further compar-
isons with M3GNet and CHGNet are provided in the Supplementary
Materials Table S4. For all cases, the single-task DPA-2 models are exclu-
sively trained on the datasets specified in the second column, whereas the
multi-task DPA-2 model undergoes pre-training on the entire corpus of
pre-training datasets (see Table 1). The multi-task DPA-2 model then

Table 2 | Comparison of the zero-shot generalization errors on downstream tasks

Energy RMSE [meV/atom] ↓ Force RMSE [meV/Å] ↓

Downstream Pre-train
(only for ST)

Data
std.

MACE
(MPtrj)

DPA-2
(MPtrj)

DPA-2
ST

DPA-2
MT

Data
std.

MACE
(MPtrj)

DPA-2
(MPtrj)

DPA-2
ST

DPA-2
MT

WARMSE 121.4 104.0 68.3 100.2 50.1 1405.4 575.6 516.6 628.0 238.8

AgAu-PBED3 AgAu-PBE 906.9 1812.8 268.9 222.9 192.3 878.0 683.2 293.3 236.9 63.6

AlMgCu-D AlMgCu 383.8 33.8 32.0 254.3 41.2 1229.5 240.1 245.3 663.7 111.8

AlMgCu-D Alloy 383.8 33.8 32.0 74.9 48.4 1229.5 240.1 245.3 122.3 112.8

ANI-1x Drug 198.9 52.3 61.7 67.2 56.6 2124.6 636.1 700.1 738.7 346.7

Cathode-D Cathode-P 42.2 15.8 29.7 39.8 43.8 641.9 288.4 613.9 339.7 273.9

Cluster-D Cluster-P 636.0 323.7 262.7 41.4 40.5 3605.4 2230.8 1193.6 238.4 190.5

FerroEle-D FerroEle-P 43.0 12.5 14.5 6.3 3.9 881.3 191.3 194.2 282.7 115.1

H2O-DPLR H2O-PD 15.6 2.1 2.0 9.1 9.3 825.2 94.4 99.7 263.5 263.4

H2O-H2O H2O-PD 47.0 4.9 7.2 4.9 4.7 1941.0 381.0 382.7 58.8 64.4

H2O-PBE0TS-MD H2O-PD 3.3 1.1 1.5 0.5 0.6 816.1 330.8 314.4 37.6 40.8

H2O-SCAN0 H2O-PD 12.6 3.2 3.8 1.1 0.7 2163.2 387.5 385.2 409.2 162.9

In2Se3 SemiCond-P 120.5 31.9 24.5 160.6 38.9 611.1 190.2 188.0 1544.1 341.6

SemiCond-D SemiCond-P 587.6 49.8 70.9 486.2 175.7 1755.4 470.7 534.9 1439.4 439.3

SSE-PBE-D SSE-PBE-P 79.0 33.7 39.4 40.7 6.2 789.5 222.1 249.9 635.6 162.4

SSE-PBESol SSE-PBE-P 84.3 32.5 37.4 26.1 8.3 810.9 231.8 260.4 425.0 115.3

Transition-1x Drug 139.8 56.4 55.1 48.2 45.8 368.1 518.6 618.3 1298.6 363.8

The MACE-MP-0 (MACE) and DPA-2 pre-trained on the MPtrj dataset, and the DPA-2 pre-trained by single-task (ST) and multi-task (MT) approaches are compared. The DPA-2 ST is trained by the pre-
training datasets listed in the second column of the Table, while the DPA-2MT is trained by all the pre-training datasets listed in Table 1. The energy and force RMSEs on the downstream test datasets are
reported. The weighted averaged RMSEs (WARMSE) with the weights presented in Table 1 are given in the first row of the table. The standard deviations of energy and force labels in the test set are also
provided. If theRMSE is smaller than the correspondingstandarddeviation, themodel shows the ability of zero-shot generalization, on theother hand, themodel cannot begeneralized todownstream tasks
without downstream data.
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employs the fitting head indicated in the second column to initialize the
fitting procedure for downstream tasks. All model variants are evaluated on
their respective downstream datasets without any additional training. The
results demonstrate that multi-task training substantially enhances gen-
eralizability compared to the single-task pre-trained DPA-2 and theMPtrj-
trained models. The comparable performance between the MPtrj-trained
MACE-MP-0 andDPA-2 suggests that the improvement is primarily due to
the multi-task pre-training scheme rather than differences in model
architecture.

Fine-tuning downstream tasks
Although zero-shot generalizability is often observed to a certain extent, a
gap from perfect generalization typically remains. To bridge this gap, we
fine-tune the models using data from the downstream tasks. A stronger
generalizability in a pre-trained model implies that less data is required
during fine-tuning, leading to higher sample efficiency. The reduction in
sample size relative to training a model from scratch quantifies the advan-
tage of employing a multi-task pre-trained model.

The sampling efficiency of the pre-trained DPA-2 on downstream
tasks was evaluated by comparing it against various other DP models that
were trained from scratch. Figure 3 showcases a selection of downstream
tasks, with a comprehensive comparison available in section S5 of the
Supplementary Materials. The figure illustrates the convergence trends of
the energy and force RMSEs in relation to the expanding sample size used
for downstream training.

To draw distinctions between the fine-tuned DPA-2 and the from-
scratch DPA-2 models, it is important to realize that both models share
identical architectures. However, the fine-tuned model begins with para-
meters derived from a multi-task pre-trained model, whereas the from-
scratch model starts with randomly initialized parameters. The fine-tuned
DPA-2 model consistently achieves lower error curves compared to the
DPA-2 model trained from scratch, particularly when the available down-
stream data is scarce. This translates to a considerable reduction in the
amount of data needed to reach equivalent levels of accuracy. Taking the
H2O-PBE0TS-MD task for example, two orders of magnitudes of training
data are saved to reach the same energy accuracy, see the zoomed-in Fig. 3.
As the sample size grows, the performance disparity between the fine-tuned

and from-scratch DPA-2 models diminishes. This outcome is anticipated,
given that both models possess the same capacity and, theoretically, their
accuracy should converge as the dataset approaches an infinite size. When
comparing DeepPot-SE (DP-SE), DPA-1, and DPA-2 models trained from
scratch, the DPA-2 model exhibits superior performance over the other
architectures. While the convergence patterns of the DPA-1 and DP-SE
models are somewhat parallel, the DP-SE model reaches a performance
plateau more rapidly than the DPA-1 in the FerroEle-D, SSE-PBESol, and
SemiCond-D tasks.

Model distillation and evaluation
The fine-tuned DPA-2 model typically suffers from computational
inefficiency due to its extensive parameter set, as illustrated in Fig. 4f. To
address this, we employed a knowledge distillation approach, transfer-
ring insights from the fine-tuned DPA-2 models to compressed DPA-1
models without attention layers. We evaluated the performance of these
distilled models in terms of efficiency and accuracy on three benchmark
downstream tasks: H2O-PBE0TS-MD, SSE-PBE-D, and FerroEle-D.
Notably, in all the cases, the fine-tuned models are exposed to only a
small portion (0.25% to −7.86%, see Table S5) of the downstream
dataset, and are used to generate the distillation training datasets that
sufficiently cover the relevant configuration spaces. In the FerroEle-D
task, we append the full FerroEle-P to a small (7.86%) portion of the
FerroEle-D dataset for the training of the fine-tuned model. The
FerroEle-D that contains solid solution perovskite oxides was generated
by the concurrent learning scheme starting from the FerroEle-P dataset
that contains unitary perovskite (see ref. 85 and Supplementary Mate-
rials section S1). Consequently, the FerroEle-D dataset alone does not
provide a comprehensive basis for training a fully capable potential
model. Additional details on the model distillation process are provided
in Supplementary Materials S7.

After distillation, the time-to-solution and the maximal system size
that canbe simulatedona singleGPUcard improvedbynearly twoordersof
magnitude, as shown in Fig. 4f. Moreover, the accuracy of the distilled
models is on par with that of the fine-tuned DPA-2 models, as detailed in
Table S5. The distilled models appear to have reached the peak of their
performance, given that their accuracies closely match those of the DPA-1

Fig. 2 | Architecture and components of the DPA-2 descriptor. a Detailed architecture of the DPA-2 descriptor, which includes two primary components: repinit and
repformer. b Structure of repinit. c Structure of repformer. d–g Substructures referenced in subsequent sections.
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models (without an attention layer) when trained on the complete down-
stream datasets.

Finally, to validate the reliability of the distilled models beyond the
energy and force RMSEs, we have conducted various application tests on
the aforementioned three systems, as reported in Fig. 4a–e. In the
downstream task of H2O-PBE0TS-MD, we observe that the radial dis-
tribution functions (RDFs) and the angular distribution function (ADF)
of the distilled model are in almost perfect agreement with those
obtained from the AIMD simulation, see Fig. 4a, b. In the downstream
task of SSE-PBE-D, the diffusion constants of Lithium ions in the
Li10SnP2S12 system under different temperature conditions are calcu-
lated. The distilled model presents satisfactory agreement with the
previously reported MD simulations using the DP-PBE LiSnPS model
and DFT (i.e., AIMD simulations)86,87, see Fig. 4c. The discrepancy
between the simulation and the experimental results88 may be attributed
to the approximation error of the density functional and finite size
effects, as discussed in ref. 89. In the downstream task of FerroEle-D, we
investigated the temperature-driven phase transition in the solid solu-
tion ferroelectric perovskite Pb(In1/2 Nb1/2)O3–Pb(Mg1/3 Nb2/3)
O3–PbTiO3 (PIN–PMN–PT), see Fig. 4(d–e). Tetragonal-cubic (T-C)
transitions are observed at ~250 K and ~300 K for two concentrations
0.29PIN–0.45PMN–0.26PT and 0.36PIN–0.36PMN–0.28PT, respec-
tively. The fact that the transition temperature rises for ~50 K due to the
increment in the PIN (Pb(In1/2 Nb1/2)O3) portion from 29% to 36% is in
line with the experimental observations90,91.

Discussion
In this work, we introduce DPA-2, a newly designed model architecture
for the Large Atomic Model (LAM), supported by a comprehensive
pipeline that includes multi-task pre-training, fine-tuning, knowledge
distillation, and practical deployment. The principal findings concerning
DPA-2 are as follows: (1) DPA-2 demonstrates exceptional ability for
generalization, primarily due to the multi-task pre-training approach,
which utilizes 18 datasets covering 73 chemical elements. These datasets
would not typically be merged in a single-task pre-training scenario due
to differing labeling methodologies, such as exchange-correlation func-
tionals, energy cutoffs, and k-space grid spacing. (2) The multi-task pre-
training approach significantly enhances zero-shot generalization on
downstream tasks. It reduces the zero-shot weighted average RMSEs by
52% in energy and 59% in force compared to the MPtrj pre-trained
MACE model, and by 50% in energy and 62% in force compared to the
single-task pre-trained DPA-2 model. (3) In downstream tasks, the
multi-task pre-training approach enables a reduction in data require-
ments by approximately 1–2 orders of magnitude without sacrificing
accuracy. These results suggest that the DPA-2 model, along with the
proposed workflow, stands as a promising framework for molecular and
materials simulation.

It is evident that the existing pre-training datasets for the DPA-2model
are insufficient. For example, the datasets currently in use are notably defi-
cient in information on 2-Dmaterials, which significantly limits the model’s
generalizability to such systems. As a result, the development of LAMs like

Fig. 3 | Comparative analysis of sample efficiency on downstream tasks. The
horizontal axis represents the volume of downstream data required, while the ver-
tical axis depicts the RMSE in energy or force predictions. For a uniform assessment

acrossmodels, the number of training epochs permodel for each downstream task is
normalized to a standard value, derived by dividing 1 million by the number of
downstream samples.
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DPA-2 must be considered a long-term endeavor. This process necessitates
the ongoing collection of diverse training data, the incorporation of
application-specific test cases, and the establishment of automatedworkflows
for data preprocessing, model training, model evaluation, and version
updates. In recognition of these needs, we underscore the importance of
fostering LAMs within an open and collaborative ecosystem. Such an
approachwould enable themolecular simulation community to both benefit
fromandcontribute to the evolutionof LAMs.Reflectingour commitment to
this vision,wehave launched theOpenLAMInitiative (https://deepmodeling.
github.io/blog/openlam).Updateson this initiativewill be regularlypostedon
the AIS Square platform (https://www.aissquare.com/openlam). We cor-
dially invite readers to participate in this project in any capacity they deemfit.

Methods
Formulation
In this study, we examine a system consisting ofN atoms, where the atomic
numbers are represented by the list Z ¼ Z1; . . . ;Zi; . . . ;ZN

� �
, and the

atomic coordinates are denoted by the list R ¼ r1; . . . ; ri; . . . ; rN
� �

. The
potential energy surface (PES) of the system is symbolized by E, a function
dependent on elemental types and coordinates, expressed as
E ¼ EðX Þ; X :¼ ðR;ZÞ. The potential energy surface can be further
decomposed into the following equation:

E ¼P
i
Ei; ð1Þ

where Ei signifies the atomic energy contributions originating from atom i.
The atomic force exerted on atom i, represented as Fi, is defined as the
negative gradient of the total energy with respect to the coordinate:

Fi ¼ �∇ri
E: ð2Þ

For periodic systems, the virial tensor can be obtained as follows:

αβ ¼ �P
γ

∂E
∂hγα

hγβ; ð3Þ

where Ξαβ corresponds to the αβ component of the virial tensor, and hαβ
yields the β-th component of the α-th cell vector.

The architecture of the DPA-2 model
TheDPA-2 is amodel that predicts the atomic energy contributionbasedon
the atomic numbers Z and the coordinatesR. It consists of two parts,

Ei ¼ F Di R;Zð Þ� �
; ð4Þ

where Di represents the descriptor of atom i. The descriptor must be a
smooth mapping from the atomic numbers and coordinates to a hidden
representation that remains invariant under translational, rotational, and
permutational (only among atoms with the same atomic number)
operations.

The fitting networkF is usually modeled by a standardmultiple-layer
perceptron (MLP) composed of an energy-biasing layer,

F ðDiÞ ¼ ebias MLPðDiÞ
� �

: ð5Þ

The energy bias layer “ebias” adds a constant bias to the atomic
energy contribution according to the atomic number, i.e.,
ebiasðZiÞðMLPðDiÞÞ ¼ MLPðDiÞ þ ebiasðZiÞ. Ideally, the energy bias ebias
should be taken as the energy of an atom in a vacuum. In practice, the energy
bias may be determined by a least-square fitting of the energies in the
training data. More precisely, suppose we haveM data frames, and within
the m-th frame, we have cmz atoms with atom number z, and the DFT

Fig. 4 | Evaluation of the distilledmodel across various downstream applications.
a, b Comparison of the radial distribution function (RDF) and angular distribution
function (ADF) for the H2O-PBE0TS-MD dataset between the reference AIMD
results93 and the distilled model. The model is distilled from a DPA-2 model fine-
tuned from merely 0.25% of DFT-labeled data. c A comparison of diffusion con-
stants for the solid-state electrolyte Li10SnP2S12. The constants were determined
using various methods: the distilled model, DPMD as reported in Huang et al.89,
AIMD simulations from the studies by Mo et al. and Marcolongo et al.86,87, and
experimental findings from solid-state nuclear magnetic resonance (NMR) as
documented by Kuhn et al.88. The distilled model is trained from a DPA-2

model fine-tuned by 1.01% of the SSE-PBE-D data. d, e The temperature-dependent
lattice constants for the ternary solid solution ferroelectric perovskite oxides
Pb(In1/2 Nb1/2)O3–Pb(Mg1/3 Nb2/3)O3–PbTiO3 (PIN–PMN–PT). The NPT MD
simulations using the distilled model are conducted for two concentrations,
0.29PIN–0.45PMN–0.26PT and 0.36PIN–0.36PMN–0.28PT85. The model is
distilled from a DPA-2 model fine-tuned with the complete FerrEle-P dataset
and 7.86% of the FerrEle-D data. f Computational efficiency assessment for the
aforementioned three systems, showcasing the time-to-solution as a function of
the system size in the number of atoms (Natoms).
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labeled energy of the frame is denoted by E�
m. Then the linear systemX

z

cmzebiasðzÞ ¼ E�
m; m ¼ 1; . . . ;M; ð6Þ

is solved in the least-square sense. Here we assume that the number of
independent equations in system Eq. (6) is equal to or smaller than the
number of framesM.

The DPA-2 descriptor is graphically illustrated in Fig. 2, specifically,

Di ¼ concat f 0i ; f
2
i

� �
; ð7Þ

where f 0i and f 2i denote the single-atom representations of atom i. The
requirements for smoothness and symmetry preservation in single-atom
representations are identical to those for the descriptor. The representation
f 0i is defined as

f 0i ¼ MLP one hotðZiÞ
� �

: ð8Þ

The atomic number, Zi, is initially converted into a one-hot representation
and subsequently embedded by an MLP. The output f 0i is the single-atom
hidden representationwithdimensionn01. The single-atomrepresentation is
updated by the repinit (representation-initializer) layer that encodes the
information of local configuration, expressed by the pair-atom representa-
tions g0ij a and h0ij, into the single-atom representation.

f 1i ¼ repinit f 0i ; g
0
ij; h

0
ij

� �
: ð9Þ

The feature f 2i is mapped from single-atom representation and pair-atom
representations g0ij; hij by a multiple-layer structure,

f 2i ¼ repformer °� � �°repformer|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
× 12

linear f 1i
� �

; linear g1ij

� �
; h1ij

� �
; ð10Þ

where the single- and pair-atom representations are updated by repformer
(representation-transformer) layers. The repformer is designed in a way that
the input andoutput representations share the shapedimension, thus theyare
stacked 12 times. The “∘” in Eq. (10) thus denotes the layer composition (or
mathematically the function composition). The linear mappings are used to
change the dimension of f 1i and g1ij to match the shape requirement of
repformer. The pair-atom representations g0ij; h

0
ij; g

1
ij and h1ij will be

introduced shortly later. It is assumed that the repinit and repformer layers
only require the information of i’s neighboring atoms, i.e., all atoms falling
within a sphere centered at atom i with a radius rc. This radius is commonly
referred to as the cut-off radius.We thus introduce the notationNrc

ðiÞ, which
represents the set of all neighbors of i, i.e.,Nrc

ðiÞ ¼ fj : j≠i; jrj � rij<rcg. The
maximum possible number of neighbors for the atoms in the system is
denoted by Nm

rc
, so we have jNrc

ðiÞj≤Nm
rc
; 8i.

To define the pair-atom representations, g0ij; h
0
ij, we consider the local

configuration of atom i represented by the augmented environment matrix
with shapeNm

r0c
× 4, where r0c is the cut-off radius used to compute the pair-

atom representations. The j-th row of the environment matrix, being a
4-dimensional vector, is defined by

~rij ¼ sðrijÞ× 1;
xij
jrijj

;
yij
jrijj

;
zij
jrijj

 !
; ð11Þ

where (xij, yij, and zij) are the Cartesian coordinates of the relative position
rij = ri− rj. Inmost cases, thenumberof neighbors is smaller thanNm

rc
, so the

environment matrix only has jNrc
ðiÞj rows defined by Eq. (11), and the

remaining positions are filled with zeros. The switched inverse distance

function s in Eq. (11) is defined by

s rij
� �

¼ wij

jrijj
; wij ¼ wðjrijjÞ: ð12Þ

The switch functionw takes the value0outside the cut-off radius rc, and
1 inside a startingpoint of switching, denotedby rcs. In between rcs and rc, the
switch function smoothly changes from 1 to 0. It is required that w has a
continuous second-orderderivativeR.Onepossible implementationofw is
provided as

w jrijj
� �

¼
1 if rij<rcs;

u3 �6u2 þ 15u� 10
� �þ 1 if rcs ≤ rij<rc;

0 if rc ≤ rij;

8><
>: ð13Þ

where u = (∣rij∣− rcs)/(rc− rcs) and rcs < rc is the starting point of the smooth
switch.

The first column of the augmented environment matrix is defined as
the rotationally invariant pair-atom representation, while the remaining
three columns are denoted by the rotationally equivariant pair-atom
representation, i.e.,

g0ij ¼ sðrijÞ; ð14Þ

h0ij ¼ sðrijÞ×
xij
jrijj

;
yij
jrijj

;
zij
jrijj

 !
: ð15Þ

The procedure for calculating pair-atom representations is
graphically illustrated in Fig. 2f. The representations g1ij and h1ij are
established in precisely the same manner as g0ij and h0ij, with the only
potential variation being the selection of a distinct cut-off radius,
denoted as r1c .

The repinit layer. This layer only updates the single-atom f 0i and pair-
atom g0ij representations, and does not update the equivariant pair-atom
representation hij that is of dimension 3. The repinit layer first embeds the
concatenated single- and pair-atom representations to update the pair-
atom representation

grtij ¼ MLP concat f 0i ; f
0
j ; g

0
ij

� �� �
; 8j 2 Nr0c

ðiÞ ð16Þ

Then,we concatenate the g0ij andhijpair-atomrepresentations to recover the
environment matrix and update the single-atom representation using a
symmetrization operation

f 1i ¼ linear f 0i
� �þ symm grtij ;~rij

� �
: ð17Þ

The symmetrization operator, first introduced by ref. 41, has the general
form of symm (xj, yj), where xj and yj are neighbor-indexed vectors. It is
assumed that xj is rotationally invariant, while yj is not, but the inner
product is rotationally invariant. The symmetrization operator is
defined by

symmðxj; yjÞ ¼ flatten
αγ

X
β

pαβ p
<
γβ

0
@

1
A; ð18Þ

pαβ ¼
1
Nm

r0c

X
j2Nr0c

ðiÞ
wij xj;α yj;β; ð19Þ
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p<αβ ¼ split
α

ðpαβÞ: ð20Þ

In Eq. (18), the matrix dimensions α and γ are flattened to form a vector. In
Eq. (19), the summation is taken over the index of neighbors j, making the
matrix p permutationally invariant. When an atom comes into the neigh-
borhood of atom i, the quantities xj and yj generally do not smoothly switch
from 0. To prevent the discontinuous jump, the switch wij is multiplied. In
Eq. (20), the matrix pαβ is split along the α dimension, and the first certain
number of elements are taken and assigned with the notation p<. It can be
proven that the symmetrization operator is invariant with respect to rota-
tional operations and permutational operations over atoms of the same
atomic number41.

The repformer layer. This type of layer maintains the input and output
dimensions of the single- and pair-atom representations, allowing it to be
stacked to enhance its representational capabilities. However, the output
of the repinit may not necessarily satisfy the dimension requirements of
the repformer layer. To address this issue, the representations are first
projected to the desired shape using a linear layer, as follows:

f 2;0i ¼ linear f 1i
� �

; ð21Þ

g2;0ij ¼ linear g1ij

� �
; ð22Þ

h2;0ij ¼ h1ij: ð23Þ

Subsequently, these representations are updated by the repformer layers.
The dimensions of the single- and pair-atom representations are denotedby
n21 and n22, respectively. In the subsequent discussion, the input
representations for the l-th repformer layer are denoted by f 2;li and g2;lij .

In each repformer layer, the single-atom representation is updated by

f 2;lþ1
i ¼ 1ffiffiffi

3
p f 2;li þMLP ~f

2;l
i

� �
þ loc attn f 2;li

� �� �
: ð24Þ

The intermediate representation ~f
2;l
i is defined by

~f
2;l
i ¼ concat f 2;li ;

1
Nm

r1c

X
j2Nr1c

ðiÞ
wijg

2;l
ij f̂

2;l

j ; symm f 2;lj ; h2;lij

� �
; symm g2;lij ; h

2;l
ij

� �0
@

1
A;

ð25Þ

where f̂
2;l

j is a linearly transformed f 2;lj that has the same dimension as the
equivariant pair-atom channel, i.e., f̂

2;l

j ¼ linearðf 2;lj Þ. The last term in
Eq. (24) is the local multi-head self-attention, defined by

loc attn f 2;li
� �

¼ linear
β;h!n21

X
j2Nr1c

ðiÞ;α
Bl;η
ij f

l
j;αV̂

l;η
α;β

0
@

1
A; ð26Þ

with the attention map B given by

q̂l;ηi;γ ¼
X
α

f li;α Q̂
l;η
α;γ; k̂

l;η

j;γ ¼
X
β

f lj;β K̂
l;η
β;γ; ð27Þ

Bl;η
ij ¼ softmax

j2Nr1c
ðiÞ

� 1ffiffiffî
d

p X
γ

q̂l;ηi;γ k̂
l;η

j;γ

 !
: ð28Þ

Here, d̂ denotes the hidden dimension of the local self-attention, and the
Q̂; K̂ , and V̂ are trainable matrices. The “*” over the softmax operator
indicates that the softmax used in Eq. (28) is modified to guarantee the

smoothness of the attention map. The definition will be introduced in Eq.
(35) at the end of this subsection.

In each layer, the rotationally invariant pair-atom representation is
updated by

g2;lþ1
ij ¼ 1ffiffiffi

4
p g2;lij þMLPðg2;lij Þ þ wij linear

n21!n22
ðf 2;li � f 2;lj Þ þ gated attn g2;lij ; hij

� � !
;

ð29Þ

where the last term inEq. (29) is the gatedmulti-head self-attention,which is
defined by

gated attn g2;lij ; hij
� �

¼ linear
β;h!n22

X
k2Nr1c

ðiÞ;α
Ah
ijkg

2;l
ik;αV

l;η
α;β

0
@

1
A: ð30Þ

In Eq. (30), the attention map A is given by

ql;ηij;γ ¼
X
α

g2;lij;α Q
l;η
α;γ; kl;ηik;γ ¼

X
β

g2;lik;β K
l;η
β;γ; ð31Þ

Al;η
ijk ¼ softmax

k2Nr1c
ðiÞ

y 1ffiffiffi
d

p
X
γ

ql;ηij;γk
l;η
ik;γ

 ! X
δ

hij;δhik;δ

 ! !
; ð32Þ

where d denotes the hidden dimension of the self-attention, theQ,K, andV
are trainable matrices, and η is the index of the attention heads. The gate
term hijh

T
ik is proved to be critical to the generalization ability of themodel43.

As detailed in Eq. (36) at the end of this subsection, the † over the softmax
operator indicates that the softmax used in Eq. (32) ismodified to guarantee
smoothness.

We notice that it is fully valid to update the rotationally equivariant
representation hij in a similar way, e.g.,

h2;lþ1
ij ¼ 1ffiffiffi

2
p h2;lij þ linear

h

X
k2Nr1c

ðiÞ
Ah
ijkh

2;l
ik

0
@

1
A

0
@

1
A: ð33Þ

However, wefind suchanupdatewould not improve the accuracy andoften
make the training procedure unstable. Therefore, we choose not to update
hij in the current version of the DPA-2 model.

The smoothness of the softmax operation. The standard softmax is
defined by

softmaxðxijÞ ¼
exijP
ke

xik
; ð34Þ

which introduces a discontinuity in the attentionmaps in Eqs. (28) and
(32). Simply multiplying a switch to the attention maps does not fix the
problem. Suppose that one atom comes into the cut-off; the denomi-
nator of Eq. (34) changes in a discontinuous way, thus all softmaxðxijÞ
change discontinuously, no matter whether j is the new neigh-
bor or not.

To fix this issue, we define the softmax� by

softmax�ðxijÞ ¼ wij softmax wijðxij þ s�Þ � s�
� �

: ð35Þ

Similarly, the softmaxy is given by

softmaxyðyijkÞ ¼ wijwik softmax wijwikðyijk þ syÞ � sy
� �

: ð36Þ
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It is assumed that the shifting constants s* and s† are chosen a magnitude
larger than xij and yijk, respectively. In practice, themagnitude of both xij and
yijk in Eqs. (35) and (36) are of order 1, so we set s* = s† = 20.

Connection to DPA-1 and graph neural network potential models.
The DPA-2 model is closely related to the DPA-1 model43. The repinit
layer essentially serves as the backbone architecture of the DPA-1. The
key difference is that the DPA-1 model applies one or multiple gated
attention layers to the pair-atom representation grtij , whereas the DPA-2
model stacks multiple repformer layers on top of the repinit layer.

The core innovation of theDPA-2model lies in its repformer layers,
which can be interpreted as an E(3) equivariant graph neural network
(GNN). The single-atom representation fi serves as the node feature,
while the pair-atom representations gij and hij function as rotationally
invariant and equivariant edge features, respectively. Unlike GNNs such
as SchNet53 and NequiP59, which update node features through con-
volution and self-interactions, the DPA-2 model employs additional
mechanisms for node feature updates, as detailed in Equations (24) and
(25). Moreover, DPA-2 enhances edge feature updates within each
repformer layer through non-linear self-interaction, a product of node
features, and gated self-attention mechanisms, thereby offering greater
capacity compared to conventional GNNs.

Single-task training
Suppose that we have a training dataset T of sizeM, and denote the DFT-
labeled energy and force for any configuration Xm; 1≤m≤M, by E�

m and
fF�

i;mg, respectively. The dataset T yields

T ¼ fðX 1; E
�
1 ; fF�

i;1gÞ; . . . ; ðXM ; E
�
M ; fF�

i;MgÞg: ð37Þ

We denote the trainable parameters of the descriptor by θ, and those of the
fitting network by ξ. When necessary, the parameters are placed as super-
scripts of the corresponding notation, i.e., we have Dθ

i and F ξ for the
descriptor andfittingnetwork, respectively. ThePESmodel is thus rewritten
as E ¼ Eθ;ξðX Þ. The loss function at training step t is written as

Lðθ; ξ;B; tÞ ¼ 1
jBj
X
m2B

peðtÞ
N

∣ΔEθ;ξ
m ∣

2 þ
pf ðtÞ
3N

X
i

∣ΔFθ;ξ
i;m∣

2

 !
; ð38Þ

ΔEθ;ξ
m ¼ Eθ;ξðXmÞ � E�

m; ð39Þ

ΔFθ;ξ
i;m ¼ Fθ;ξ

i ðXmÞ � F�
i;m; ð40Þ

where B, a randomly sampled subset of {1,…,M}, represents theminibatch
of the training dataset. pe(t) and pf(t) are the energy and force prefactors,
respectively. If the learning rate at step t is denoted by γ(t), then the pre-
factors are defined by

pξðtÞ ¼ pstartξ

γðtÞ
γð0Þ þ plimit

ξ 1� γðtÞ
γð0Þ

� 	
; ξ 2 fe; f g: ð41Þ

At the beginning of the training, the prefactor pξ is set to a hyperparameter
pstartξ , and it linearly decays with respect to the learning rate. If the learning
rate decays to zero, i.e., limt!1 γðtÞ ¼ 0, the prefactor converges to the
hyperparameter plimit

ξ at the infinite training step. We have adopted the
Adam stochastic gradient descent method92 to minimize the loss function
with respect to the model parameters θ and ξ. Virial errors, which are
omitted here, can be added to the loss for training if available.

Multi-task training protocol
For various datasets labeled with different DFT calculation parameters, it is
infeasible tomerge themdirectly into a single training set formodel training.
However, these DFT datasets should inherently share a significant amount

of commonality, and we expect they can mutually promote each other’s
training, thus benefiting the overall model capacity.

In this work, to fully utilize various sources of DFT-calculated data, we
propose a novel multi-task training strategy using a unified model frame-
work for simultaneous training on data calculated with different DFT
parameters, as illustrated inFig. 1a.Wefirst groupall the trainingdata intoK
training datasets, denoted as T ¼ fT1; . . . ;TKg, where each dataset con-
tains configurations labeled with identical DFT parameters. The config-
urations and labels in the k-th training dataset are represented by:

Tk ¼ fðX k1; E
�
k1; fF�

i;k1gÞ; . . . ; ðX kM ; E
�
kM ; fF�

i;kMgÞg: ð42Þ

We establish a DPA-2 model with the unified descriptor and K fitting
networks, and the k-th model is given by:

E ¼ Eθ;ξk ðX Þ; ð43Þ

where ξk represents the network parameters of the k-th fitting network. The
k-th fitting network is trained by the k-th training dataset, while the unified
descriptor (with parameters θ) is simultaneously trained by all datasets, and
the loss function is given by

Lðθ; fξkg; S; fBg; tÞ ¼
1
jSj
X
k2S

1
jBkj

X
m2Bk

peðtÞ
Nm

∣ΔEθ;ξk
km ∣

2 þ
pf ðtÞ
3Nm

X
i

∣ΔFθ;ξk
i;km∣

2
 !

;

ð44Þ

ΔEθ;ξk
km ¼ Eθ;ξk ðX kmÞ � E�

km; ð45Þ

ΔFθ;ξk
i;km ¼ Fθ;ξk

i ðX kmÞ � F�
i;km: ð46Þ

At each training step, a subset of the training datasets is sampled T , and the
indices of the sampleddatasets aredenotedby S.Bk represents theminibatch
of the training datasetTk. It should be noted that there is a significant degree
of freedom in designing the sampling strategy for S. Sampling can be con-
ducted with a uniform probability or with a bias towards certain systems.
Furthermore, sampling may be performed with or without replacement. In
our implementation, larger andmore complexdatasets are assignedahigher
probability, and sampling with replacement is employed.

Pre-training and fine-tuning
By utilizing multi-task training on all available training datasets, the con-
figurational and elemental knowledge shared among thedatasets is expected
to be encoded in the descriptorDθp , with θp denoting the converged model
parameters. The fitting networks are expected to encode system-specific
knowledge. The multi-task training scheme provides the possibility of
training with a large number of training datasets (most likely labeled with
distinct DFT parameters). Therefore, when trained with a sufficiently large
dataset that covers a wide range of configurations and elements for future
applications, it is expected that much less training data would be needed to
train a new systemwith the help of the encoded knowledge. The multi-task
pre-trainedmodel canbeused to improve the accuracy anddata efficiency in
downstream tasks. It is worth noting that the downstream task can be either
constructing a PES, or a property prediction task, and in this work, we only
discuss the PES as a downstream task. The procedure of training amodel for
downstream tasks from a pre-trained model is called fine-tuning.

Given a downstream task training dataset, we may initialize the
descriptor of our downstream task model with θp to boost the performance
compared to a random initialization of the descriptor parameters. Fur-
thermore, if the downstream dataset shares similar configurational and
elemental information with any of the fitting networks, then the fitting
network of the model could also be initialized with the pre-trained fitting
network. The energy bias of the downstream task is determined by the
downstream training dataset, rather than by those used in the pre-
training stage.
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Model distillation
The fine-tunedmodel possesses a large number of parameters, whichmight
result in low efficiency when directly applied to production scenarios, such
as MD simulations. To mitigate this issue, we can distill the model into a
more compact version that maintains accuracy on downstream tasks while
concurrently achieving speed enhancements and enabling large-scale
simulations. The distillation process, illustrated in Fig. 1c, consists of an
iterative concurrent learning loop. The model prior to distillation, denoted
as the teacher model, is used for data labeling, whereas a student model
featuring a simplermodel structure (e.g.,DPA-1without anyattention layer,
which can be further compressed78 to significantly enhance performance) is
trained on the labeled data. Subsequently, the teacher model is utilized for
MD exploration, adopting simulation settings similar to those of down-
stream tasks, ensuring that the elemental and configurational spaces
explored during distillation and downstream tasks exhibit overlap. Con-
figurations are sampled from the simulated MD trajectories, and the
inference deviations between the teacher and student models on those
samples are assessed. Samples with model deviation exceeding a pre-
determined threshold are added to the training dataset for the next iteration.
This procedure is repeated until the student model’s accuracy satisfies our
criteria or no longer changes.

Data availability
The datasets and models used in this study, as detailed in the section S1 of
the Supplementary Materials, are all available on AIS Square (https://www.
aissquare.com). The codes, datasets, and input scripts are all available on
zenodo (https://doi.org/10.5281/zenodo.13342300). Finally, to test the
models, users are welcome to consider going through this Bohrium Note-
book (https://nb.bohrium.dp.tech/detail/18475433825), and explore theDP
Combo web server (https://app.bohrium.dp.tech/dp-combo).
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