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% Check for updates Due to traits of CMOS compatibility and scalability, HfO,-based ferroelectric

ultrathin films are promising candidates for next-generation low-power
memory devices. However, their commercialization has been hindered by
reliability issues, with fatigue failure being a major impediment. Here, we
report superior ferroelectric performances with fatigue-free behavior in
interface-designed Hf sZro 50,-based ultrathin heterostructures. A coherent
Ce0,.,/Hfg 571 50, heterointerface is constructed, wherein the oxygen-active,
multivalent CeO,., acts as an “oxygen sponge”, capable of reversibly accepting
and releasing oxygen ions. This design effectively alleviates defect aggregation
at the electrode-ferroelectric interface and reduces coercive field, enabling
improved switching characteristics and exceptional reliability. Further, a
symmetric capacitor architecture is designed to minimize the imprint, thereby
suppressing the oriented oxygen defect drift. The two-pronged technique
prevents intense fluctuations of oxygen concentration within the device dur-
ing electrical cycling, suppressing the formation of paraelectric phase and
polarization degradation. The interfacial design technique ensures superior
switching and cycling performances of Hfj 5Zrg sO, capacitors, embodying a
fatigue-free feature exceeding 10" switching cycles and an endurance lifetime
surpassing 10" cycles, along with excellent temperature stability and long
retention. These findings pave the way for the development of high-
performance and ultra-stable hafnia-based ferroelectric devices.

Ferroelectric memories elicit great interests for the merits of reversible
polarization states', nonvolatile characteristic’, fast switching speed?,
and low energy consumption®>, all of which cater to the demands

transistors”, as well as emerging computing paradigms like neuro-
morphic and in-memory computing'®. The exceptional ferroelectricity
discovered in the high-k dielectric HfO,-based ultrathin films", which

of next-generation low-power memory and logic devices, such as
ferroelectric random access memory>®, ferroelectric field-effect

are fully compatible with Si-technologies and overcome the thickness
limitation'>", provides a solution to tackle the CMOS compatibility and
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scalability concerns inherent in conventional perovskite oxide
ferroelectrics'”. Since its discovery, HfO,-based ferroelectrics have
greatly facilitated the integration of ferroelectricity into integrated
circuits and boosted the progress of ferroelectric memories'®. Despite
that, reliability characteristics of HfO,-based ferroelectric electronics,
particularly fatigue resistance®”, fall short of commercial metrics'®. It is
well established that a stable polarization state is fundamental to the
operation of ferroelectric devices. Nevertheless, fatigue, characterized
by a decrease in switchable polarization during repeated read-write
operations, renders polarization states indiscernible and ultimately
leads to device malfunction. Till now, most HfO,-based planar capa-
citor devices can only sustain a stable cycling behavior for -10°
cycles'” %, This is considerably lower than those of perovskite oxide
counterparts (such as SrBi,Ta,00>, BizsLagsTiz012%*, and PbZr,Ti;.
0377, which can bear steady performances for >10' switching
cycles®?. Additionally, other reliability-related concerns, such as
endurance, retention and temperature stability, continue to pose
obstacles®. Altogether, these reliability issues present substantial

impediments to advancing high-performance HfO,-based ferroelectric
devices.

Several models have been proposed to explain the fatigue
degradation mechanism®?**, Field-driven defect generation and
migration, particularly of oxygen vacancies (Vo), along with con-
sequent defect trapping and accumulation, are often attributed to
these performance instabilities. Especially, several unique features
inherent in the unconventional polar phase of HfO, likely cause its
increased susceptibility to fatigue. The ferroelectric phase of HfO,
(orthorhombic Pca2,), compared to the ground-state monoclinic P2;/c
paraelectric phase, is metastable®’, and would transition into the
nonpolar phase when subjected to disturbances like oxygen
voltammetry” during electrical cycling. Additionally, the high coer-
civity characteristic of HfO,-based ferroelectrics” provides sufficient
driving force for the generation and migration of Vo*’, which accel-
erates fatigue. The ultra-thin thickness of HfO,-based ferroelectric film
not only amplifies these effects, but also makes the interfacial-related
degradations (like domain pinning and phase transition) more
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Fig. 1| Atomic insight and enhanced performances of interface-designed HfO,-
based devices. a Diffusion energy barriers of oxygen vacancy (Vo) in the CeO,.,/
HfO, heterostructure. b Schematics of Vo migrations in the capacitors based on
CeO,.,/HfO, and bare HfO, under fields. The arrows colored in cyan and blue
denote the applied electric fields in different directions. The spheres highlighted in
cyan and blue represent the oxygen vacancies moving forward and backward. The
length of the tails, irrespective of color, signifies the mobility of defects in the
presence of external electric fields. ¢ Polarization switching barriers for the CeO,.,/

Electric field (MV cm™")

HfO, and bare HfO, capacitors. d HADDF-STEM image, EELS mappings and Fourier
transformation for the CeO,.,/HfO,/LSMO heterostructures. e Coercive fields and
remnant polarization values for capped HZO devices. f Cycling performances for
the bare Pt/HZO/LSMO device and Pt/Ce0,.,/HZO/LSMO capacitor. g Polarization-
electric field loops for the Pt/Ce0,.,/HZO/LSMO capacitor at different cycling
stages. h A comparison of the fatigue and endurance behaviors for the HZO-based
capacitors with different capping layers.
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pronounced. These aspects collectively trigger an early fatigue during
operations. Strategies like oxygen scavenging®>*, oxygen supply®-,
and electrical rejuvenation®, aimed at maintaining the metastable
polar phase, reducing defect segregation and releasing pinned
domains during cycling, have shown some success in enhancing
endurance and relieving fatigue. However, cycling behaviors of opti-
mized HfO,-based planar capacitor devices still lag far behind those of
commercial perovskite oxide-based ferroelectric devices**. A deeper
understanding of the underlying mechanisms of fatigue and further
optimization of the reliability of HfO,-based ferroelectrics are urgently
needed.

Here, we demonstrate a well-designed interface that can drasti-
cally improve the reliability characteristics of HfO,-based ultrathin
ferroelectric devices. An ultrathin fluorite-structured CeO,., is engi-
neered as a coherent capping layer on ferroelectric Hfy sZro 50, (HZO)
film, effectively reducing the switching barrier during polarization
reversals. Moreover, the multivalent-oxide CeO,., epitaxial layer not
only reduces the diffusion barrier of Vo near the CeO,.,/HZO interface
region but also serves as an “oxygen-sponge”, which can reversibly
accept and release V. This approach mitigates the ferroelectric-to-
paraelectric phase transformation and maintains the polar feature of
HZO throughout the cycling process, yielding an ultra-thin CeO,.,/HZO
heterojunction ferroelectric device with notably enhanced polariza-
tion (P,=21pC cm™) and reduced coercive field (<3 MV cm™ for the
6nm film), alleviated imprint and stable retention. Furthermore,
incorporating an additional Lag¢7Sro33Mn0O3 (LSMO) layer on the
CeO,., film as a secondary buffer constructs a more symmetric capa-
citor (i.e., Pt/LSMO/Ce0,.,/HZO/LSMO). This design suppresses the
imprint field-driven oriented defect movement, enables comprehen-
sive improvement of ferroelectric properties and achieves an ultra-
stable cycling behavior of hafnia-based devices, which manifests as a
fatigue-free cycling behavior approaching 10" electrical cycles and a
stable endurance lifetime surpassing 10 cycles.

Results

DFT computational results

It is well known that ferroelectric-electrode heterointerfaces, where
defect accumulation®®, charge injection®®, and domain pinning®*°
occur, are crucial to the cycling reliability of ferroelectric materials.
These interfacial phenomena would play an important role in the
endurance and fatigue behaviors of HfO,-based ferroelectric devices.
Therefore, optimizing interfaces is a natural and feasible strategy for
enhancing reliability.

We choose fluorite-structured CeO,., as the optimal interfacial
buffer for HfO, because of its structural similarity to HfO, and its
oxygen-active properties**>. Our first-principles calculations reveal
that the migration barrier for Vo in bulk HfO, is -2.3 eV (Fig. 1a).
Notably, the incorporation of a CeO,.,/HfO, interface activates Vg in
HfO, near the interface region (-1.2 nm thick based on our DFT cal-
culations), substantially reducing the Vo diffusion barrier to a range of
0.22-0.96 eV. Therefore, Vo becomes mobile in the interface zone,
alleviating the defect pinning and enabling an effortless movement of
Vo across the CeO,.,/HfO, heterointerface. The CeO,., buffer, by
promoting interfacial vacancy mobility, effectively serves as an “oxy-
gen sponge”, rendering the reversible storage and release of Vo during
electrical read-write operations. As schematized in Fig. 1b, this oxygen-
active Ce0,.,/HfO, heterointerface facilitates the timely transportation
of Vo under electric fields. In this configuration, the CeO,., layer, rather
than the HfO, film, acts as the source and drain of Vo, preventing the
accumulated change of oxygen concentration within HfO,. This design
could maintain the metastable polar HfO, phase and mitigate the early
degradation of switching performance of HfO,-based ferroelectric
devices. Conversely, other interfaces, such as ZrO,/HfO, (Supple-
mentary Fig. S1) or bare HfO, (Fig. 1b), are less competent in activating
Vo. This inefficiency leads to the aggregation of defects near the

interface, likely causing domain pinning and phase transition during
cycling operations. Furthermore, our DFT calculations suggest that the
higher symmetry of the cubic CeO.,., layer lowers the energy of the
transition tetragonal state during polarization reversal, thereby redu-
cing the switching barrier that scales with the energy difference
between the orthorhombic ferroelectric phase and the tetragonal
transition state. Consequently, the switching barrier for the CeO,.,/
HfO, heterostructure is decreased significantly (Fig. 1c), contributing
to a smaller coercive field and enhanced endurance performance.

Characterizations of capped Hfg 5Zr¢ 50,

In accordance with the computational guidance, a~ 6-nm-thick HZO
film capped with ~0.8 nm CeO,., layer was fabricated (detailed in the
“Methods” part). Additionally, HZO films with a capping layer of either
ZrO, or Al,O3 oxides were also prepared for comparisons (Supple-
mentary Fig. S2). XRD 6 - 20 scans reveal that all films, grown on (001)-
oriented LSMO/SrTiO;, exhibit the (111) orientation of the orthor-
hombic ferroelectric phase with essentially identical diffraction peak
positions (Supplementary Fig. S2b). Additionally, clear Laue oscilla-
tions near the (111),, diffraction peak of HZO and smooth film surfaces
(Supplementary Fig. S2c-f) indicate high crystalline quality and a clean
interface of the heterostructures. High-angle annular dark-field
(HAADF) scanning transmission electron microscopy (STEM) and
electron energy loss spectroscopy (EELS) mappings were further per-
formed to characterize the structure and interface abruptness. An
atomic-resolved image of the CeO,,/HZO heterostructure is pre-
sented (Fig. 1d), where a thicker CeO,., capping layer (-1.5nm) was
grown on the HZO to ensure clear observation. HAADF-STEM image
demonstrates that the Ce0,.,/HZO heterointerface is coherent. Fur-
ther analysis using EELS elemental mapping reveals a distinct interface
and minimal interdiffusion within the CeO,./HZO heterointerface.

Though structurally similar, the electrical performances of these
heterostructures vary significantly. Compared to bare HZO films,
capacitors based on HZO films with ZrO,, Al,O;, and CeO,., capping
layers exhibit notably lower leakage currents (Supplementary Fig. S3a).
The differences in polarization switching characteristics are even more
pronounced. The positive-up-negative-down (PUND) measurement
reveals that all capped HZO devices show enhanced polarizations
compared to the bare one (Supplementary Fig. S3b, ¢ and Fig. 1e).
Among them, capacitors based on CeO,./HZO heterostructures
demonstrate the most impressive performance, characterized by the
highest remnant polarization (P,=21pC cm™), the sharpest polariza-
tion switching current and the lowest coercive field (Ec=2.9 MV cm™).
Conversely, the effects of lowering £- and enhancing P, in HZO-based
devices capped with either Al,O5; or ZrO, are less pronounced. These
results are consistent with our aforementioned computational pre-
dictions. Furthermore, the CeO,.,/HZO heterostructure exhibits the
highest dielectric constant and most distinct butterfly-shaped &-F
curve (Supplementary Fig. S3e).

Benefiting from reduced leakage response, the breakdown
strength and endurance capabilities of these capped capacitors have
been substantially enhanced (Supplementary Fig. S4), in stark contrast
to the early breakdown occurring after ~10° switching cycles in the bare
HZO capacitors. However, the fatigue behaviors of ZrO,/HZO and
Al,03/HZO devices still exhibit an average performance in comparison
to reported results®?*?2, A noticeable degradation occurs in the early
stage of cycling for both ZrO,/HZO and Al,03/HZO heterostructures,
with a drastic decrease in polarization observed after 10% cycles
(Supplementary Fig. S4e). Switching dynamics characterizations
(Supplementary Fig. S5) are well consistent with the fatigue measure-
ments of these HZO-based capacitors, manifested as the loss of
polarization and the slowdown of switching speed after cycling. This
may be attributed to the defect pinning and phase transitions occur-
ring during the electrical cycling. In contrast, the “oxygen sponge”
Ce0,., buffer reduces Vg, diffusion barrier and decreases coercive field
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Fig. 2 | Evolution of Ce valence states and structure under different electric
treatments. a Micro-area X-ray photoelectron spectroscopy (XPS) of the Ce ele-
ment in the Ce0,.,/HZO heterostructure after different electric treatments and a
summary of Ce*:Ce*" ratio for the corresponding treatments. b-d HAADF-STEM
image with the marked region for electron energy loss spectroscopy (EELS)
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measurements, along with the relevant EELS signals before and after endurance
cycles. Micro-beam diffraction results for e, f the CeO,.,/HZO film and g, h the bare
HZO film before and after endurance cycles. The micro-beam diffractions were
performed at the BL15U1 station in Shanghai Synchrotron Radiation Facility with a
wavelength of 1A,

in the Ce0,.,/HZO device, which jointly ensure the exceptional relia-
bility: the CeO,.,/HZO-based capacitor demonstrates robust cycling
stability, maintaining stable performance for over 2 x 10° cycles and an
endurance lifespan exceeding 2 x10" cycles (Fig. 1f-h) as well as a
stable dynamics profile (Supplementary Fig. S5e). This positions it
among the most reliable categories of documented
metal-ferroelectric-metal (MFM) planar devices'***?,

Oriented drift of defects

To elucidate the impact of the CeO,., capping layer, semi in-situ micro-
area X-ray photoelectron spectroscopy was employed to probe the
valence state of Ce0,.,/HZO before and after electrical poling (Fig. 2a
and Supplementary Fig. S6). For the as-grown state, the Ce cation
within the CeO,., capping layer exhibits a multivalent oxidation state
comprising both Ce* and Ce*, with the Ce* peak area constituting a
modest ~17% of the total area. Remarkably, the trivalent (Ce*") and
tetravalent (Ce*') oxidation states can interconvert under different
electrical stimuli. Specifically, the area ratio of Ce* decreases to ~7%
after positive poling, which indicates that a certain amount of Vg
migrates from the CeO,., buffer toward the bottom LSMO electrode.
Conversely, a significant amount of Ce** transitions into Ce* within the
CeO,. layer under a negative bias. This phenomenon is corroborated
by the Hf 4f XPS spectrum (Supplementary Fig. S7). Thanks to the
protection of a CeO,., buffer layer, the Hf 4f spectrum exhibits less
sensitivity to external bias compared to that of the bare HZO sample. In
the case of the bare HZO counterpart, the sub-oxide peak emerging
after negative pulse treatment (Supplementary Fig. S8) exhibits a
markedly enhanced intensity compared to that observed in the CeO,.,/
HZO heterostructure. Collectively, these findings elucidate the

“oxygen sponge” characteristic of the CeO,., layer during electrical
operations, highlighting its ability to dynamically regulate V, con-
centration within HZO, and thereby enhancing device performance
and reliability.

Both computational and experimental results corroborate the
reservoir feature of the CeO,., capping layer, which facilitates the
reversible diffusion of Vg in accordance with the orientation of the
applied electric field. Ideally, the reversible migration of the Vo would
maintain a relatively stable oxygen content within the CeO,.,/HZO
device, thereby ensuring that the state of the ferroelectric capacitor
would not vary significantly during cycling. This is a pivotal factor in
sustaining the cycling reliability. Nevertheless, the peak area asso-
ciated with Ce* decreases from ~17 to ~13% when the device undergoes
10® switching cycles (Fig. 2a). This signifies a net migration of Vo
towards the LSMO bottom electrode and an accumulation of oxygen
ions in the CeO,., capping layer, despite the capacitor being subjected
to the symmetric bipolar electric field cycling. This phenomenon is
further corroborated by the Ce M,,s-edge EELS spectra. Initially, Ce*
ions reside at the Ce0,.,/HZO heterointerface and extend into the bulk
region of the CeO,., layer (Fig. 2c). After 10® cycles, the Ce* region
becomes narrowed and the signature of Ce*' intensifies (Fig. 2d),
supporting the XPS results. The progressively oxygen-rich CeO,., layer
would eventually lose its “oxygen sponge” function, ultimately leading
to an inevitable fatigue of the CeO,./HZO device after 2 x 10° cycles.

Synchrotron-based micro-beam XRD studies were further carried
out to probe the possible phase transition during the fatigue process.
The CeO,., buffer, functioning as a source and drain for Vo and oxygen
ions, prevents the accumulation of Vo or oxygen atoms at the inter-
face. Thus, the HZO layer in the heterostructure retains a stable polar
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structure even after 108 cycles (Fig. 2e, f). In contrast, for Pt/HZO/LSMO
capacitors without the CeO,., capping layers, due to the absence of a
timely transportation of defects, the Pt/HZO interface acts as a term-
inal for defects and mobile ions, turning the HZO film itself becoming
the main “battlefield”. This leads to a gradual transformation of the
metastable polar structure into the energetically favored phase due to
the field cycling-induced chemical/energy fluctuations. Oxygen accu-
mulation would occur at the Pt (top electrode)/HZO interface and
induce the formation of the energetically stable paraelectric mono-
clinic phase when the bare HZO device cycled 10° times (to break-
down) (Fig. 2g, h). This observation is consistent with a previous
study®**. Therefore, the absence of oxygen-active CeO,., buffer layer
leads to structural phase transitions and likely defect pinning at the
interface, directly contributing to the fatigue phenomenon.

Behaviors of more symmetric capacitors

The oriented net movement of Vo or oxygen ions is usually attributed to
the asymmetric electrical potential within the ferroelectric capacitor,
leading to the asymmetric polarization and defect accumulation at the
interface®. Tracing back to the PUND hysteresis loop of the Pt/CeO,.,/
HZO/LSMO capacitor (Supplementary Fig. S3), we can observe an
apparent imprint (i.e., horizontal shift of the P-E loop) towards the
negative bias, indicating the presence of a positive built-in field (£,
directed from the top electrode towards the bottom. This fixed positive
Eyi superimposes on the applied external symmetric bipolar field (+£5p),
resulting in an asymmetric electrical potential, manifested as (+£,, + Ep;)
d and (£, + Ep)d (where d denotes the thickness of the ferroelectric),
across the two-terminated capacitor per cycle (schematic illustrated in
Fig. 3a). In this scenario, V or oxygen ions move back and forth but with
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Fig. 4 | Reliability performances for the Pt/LSMO/CeO0,.,/HZO/LSMO capacitor.
a Endurance and fatigue behaviors for the LSMO/CeO,.,/HZO/LSMO device at

different cycling frequencies. b Polarization-electric field loops of the capacitor at
different cycling stages. ¢ Comparison of the endurance and fatigue manners for

Temperature (K)

LSMO/CeO,,, capping CeO,,, capping Bare HZO

different HZO-based planar capacitors. d-f Retention results (recording the nor-
malized switchable polarizations (Norm.Ps,) as a function of baking time), tem-
perature stability and overall comparisons of electric performances for HZO
capacitors with different interfacial designs.

different velocities and distances under the electrical driving force with
different polarities, triggering the directional migration of Vg or oxygen
ions. Herein, Fig. 3b summaries the relationship between the imprint
and fatigue behaviors in representative studies (Supplementary Note 1
for references). Interestingly, an empirical trend emerges: the more
severe the imprint, the faster the onset of fatigue. This correlation aligns
with our prior elucidations that the noticeable imprint provides suffi-
cient driving force for the directional movement of defects.

Figure 3b further demonstrates that the architecture of a ferro-
electric capacitor influences the imprint effect. A symmetric capacitor
structure can effectively decrease the imprint effect. Therefore, it is
logical to consider the symmetric “Pt/LSMO/HZO/LSMO” capacitor
architecture (Supplementary Fig. S9), where the HZO layer is sand-
wiched between two LSMO films, for improved reliability. Owing to the
symmetric capacitor structure, the LSMO-capped HZO specimen does
exhibit reduced Ec and a smaller imprint (Supplementary Fig. S10).
These factors contribute to the enhanced cycling performance of the
LSMO/HZO/LSMO device, outperforming ZrO, and Al,O5-capped
counterparts. Despite that, the fatigue behavior of the Pt/LSMO/HZO/
LSMO capacitor is still inferior to that of the Pt/CeO,.,/HZO/LSMO
counterpart (Supplementary Fig. S10d). We propose that this is
probably due to the lower effectiveness of Vg transport in LSMO
compared to CeO,.,*.

To fully leverage the benefits of the symmetric structure while
simultaneously maintaining a reduced V,, interfacial diffusion barrier,
we further grow the LSMO layer on top of the CeO,., (Supplementary
Fig. S11). The LSMO layer not only serves as a secondary oxygen
reservoir but also plays a vital role in minimizing the imprint effect. As
expected, the ultrathin Pt/LSMO/Ce0,.,/HZO/LSMO capacitor exhibits
alow Ecof 2.34 MV cm™ and suppressed imprint effect (with Ey; of only
0.38 MV cm™) (Fig. 3¢ and Supplementary Fig. S12). Accordingly, the
oriented drift of defects in the Pt/LSMO/CeO0,.,/HZO/LSMO capacitor
is suppressed compared to that of the Pt/CeO,.,/HZO/LSMO capacitor

(Supplementary Fig. S13). Additionally, the insertion of the LSMO layer
on the CeO,., buffer does not exacerbate the leakage current (Fig. 3d).

The synergistic effects of the reduced Vo migration barrier, the
LSMO-CeO.,., bilayer “oxygen sponge” and the mild imprint collec-
tively enable remarkable cycling performance of the Pt/LSMO/CeO,.,/
HZO/LSMO ferroelectric capacitor, demonstrating virtually fatigue-
free behavior for up to 10" cycles (the capacitor shows little change in
the hysteresis loop and there is only a < 5% loss in polarization after the
10" switching cycle) and maintaining a stable ferroelectricity even after
10* cycles (Fig. 4a, b and Supplementary Fig. S14a,b). Meanwhile, pulse
switching dynamics measurement (Supplementary Fig. S14c) demon-
strates a tiny variation of switchable polarization and switching time
after field cycling. To our knowledge, this interface-designed device
exhibits the most robust stability without requiring any rejuvenation
process**® during fatigue measurements, making it the most stable
HfO,-based planar capacitor reported to date (Fig. 4c and Supple-
mentary Note 1 for references). Beyond that, the fine interface condi-
tion, robust phase stability, and mitigated imprint achieved through
the interfacial design strategy not only reinforce the resistance against
thermal depolarization, but also sustain the memory margin that
might otherwise be narrowed by the imprint shift*’. Therefore, the Pt/
LSMO/Ce0,.,/HZO/LSMO capacitors display stable retention cap-
abilities, encompassing the same state (SS) and opposite state (0S)*°
retention behaviors (Fig. 4d and Supplementary Fig. S15), with accel-
erated aging tests at 358 K projecting stable performance beyond the
10-year benchmark. What’s more, distinct from the intense changes in
polarization observed in other HZO-based ferroelectric devices™* in
varying temperatures, our device exhibits reliable temperature stabi-
lity (Fig. 4e and Supplementary Fig. S16).

Discussion
The reliability issue, especially the fatigue failure, is one of the key
limitations that need to be settled for hafnia-based ferroelectric
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devices. Here, the oxygen-active and “oxygen sponge” characteristics
brought by the CeO,.,/HZO heterointerface effectively suppress the
defect accumulation and consequent polar-paraelectric phase transi-
tion during the field cycling. These enable ferroelectric devices based
on the Ce0,.,/HZO heterostructure with enhanced polarization,
impressive fatigue-resistance and endurance behaviors. Our systema-
tic studies further reveal the detrimental impact of directional defect
migration caused by the built-in field (imprint) on fatigue character-
istics. By further building a more symmetric-structure capacitor, a
record-breaking fatigue-free HfO,-based planar capacitor, which can
be steadily operated over 10 cycles, is obtained. In addition, the
designed device demonstrates a comprehensive improvement of fer-
roelectric properties which can be defined as the “hexagonal warrior”
in view of its attractive traits of fatigue-resistant, retention, coercive
field, leakage current, imprint and switchable polarization (Fig. 4f) and
the comprehensive reliability performances of this simple designed
planar capacitor are even exceeding those of Micron’s very recent
device with advanced 3D integration and complicated packaging
solutions™. Through the design of a symmetric-structure capacitor
with an “oxygen sponge” layer, we have harnessed the migration of Vo/
oxygen ions during the cycling operation, achieving ideal perfor-
mances of HfO,-based ferroelectric devices. It should be noted, how-
ever, that our current fabrication process requires large thermal
budgets during sample preparation, and the use of complex LSMO
perovskite oxide presents compatibility challenges with Si-based
technologies. Despite these limitations, our work elucidates the fati-
gue mechanism and develops a well-interfacial design strategy that
drastically improves the reliability characteristics of HZO epitaxial thin
films. Not only does this work deepen our understanding of hafnia
ferroelectrics, but it also lays a firm foundation for utilizing this
emergent CMOS-compatible ferroelectric for widespread applications,
such as nonvolatile memory devices.

Methods

Sample deposition

Both the LSMO (22 nm)/CeO, (0.8 nm)/HZO (6 nm)/LSMO (11 nm) and
Ce0; (0.8nm)/HZO (6 nm)/LSMO (11nm) systems were epitaxially
grown on (001) SrTiO; single crystal substrates by pulsed laser
deposition (Arrayed Materials RP-B) using a KrF excimer laser
(A = 248 nm). The HZO layers were deposited at 600 °C under an
oxygen partial pressure of 15 Pa at a laser repetition rate of 2Hz and a
laser fluence of 1.35]) cm™. The CeO,., were fabricated at an oxygen
pressure of 10 Pa at 600 °C with a laser fluence of 0.85) cm™and a laser
repetition rate of 3 Hz. The bottom electrode LSMO layers were grown
with a laser (3Hz, 0.85Jcm™) under an oxygen partial pressure of
20 Pa at the substrate temperature of 700 °C. For the top LSMO cap-
ping layers, they were deposited at 600°C with a laser (3Hz,
0.85) cm™) under an oxygen partial pressure of 20 Pa.

Device fabrication

All films were processed with a standard lithography to pattern the top
electrode mask on the films. After photolithography, the top electrode
Pt layer was deposited on the mask areas via magnetron sputtering
(Arrayed Materials RS-M). The MFM structure capacitors were
fabricated when the photoresist was lifted off. As for LSMO-capped
devices, the LSMO exposed area that was not covered by Pt was
etched by the KI + HCI solution (0.37% HCI + 5mol L KI aqueous
solution).

Micro-area XPS characterizations

The micro-area X-ray photoelectron spectroscopy was performed
using a PHI VersaProbe four instrument (Physical Electronics, Inc.) on
capacitors with a diameter of 50 pm. In the XPS analysis, energy cali-
bration was carried out by using the C 1s peak at 284.8 eV.

X-ray diffraction and topography characterizations

X-ray 6-26 scans were obtained by a high-resolution X-ray dif-
fractometer (Rigaku Smartlab 9 kW). To study the phase structure of
HZO heterostructures before and after electric treatments, micro-area
XRD was carried out at the beamline BL15U1 station in Shanghai Syn-
chrotron Radiation Facility (SSRF) on capacitor devices with a dia-
meter of 25 pm. The wavelength and diameter of the X-ray are 1A and
5 um. The obtained data was explored and processed with the Dioptas
programs suit™. The film morphology was determined by an Asylum
Research MFP-3D-Infinity atomic force microscope.

Aberration-corrected STEM characterization

The TEM samples for STEM observations were prepared by the
focused-ion-beam lift-out method. Before cutting, the C and W coat-
ings were deposited on the devices to protect the surface of the
devices. At first, the voltage of 30 kV and current of 0.44 nA for the ion
beam were used to polish the TEM samples. Then the current was
gradually reduced to 41 pA. Finally, the voltages of 5kV, 2kV, and 1kV
for the ion beam were used to clean the surface amorphously. Cross-
sectional HAADF-STEM images and EELS mappings were acquired by a
double-aberration-corrected scanning transmission electron micro-
scope (Spectra 300, ThermoFisher Scientific) equipped with a mono-
chromator, a Gatan 1069 EELS system and a K3 camera operating
at 300 kV.

Electrical characterizations

Electrical measurements were implemented via an MFM capacitance
structure with the bottom electrode LSMO grounded and the top
electrode Pt (with a diameter of 25 um) connected to the driving end.
The electric performances, including dynamic P-£ loops, PUND mea-
surements, retention measurements and fatigue behaviors, were
measured using a TF 3000 analyzer (aixACCT) and leakage currents
were measured using a Keithley 4200A-SCS parameter analyzer (Tek-
tronix). All temperature-dependent measurements were carried out in
a cryogenic probe station (TTPX, Lake Shore Cryotronics).

DFT calculations

All first-principles density functional theory calculations were per-
formed using Vienna Ab initio Simulation Package (VASP) with gen-
eralized gradient approximation of the Perdew-Burke-ErnZerhof
type>*°. To describe the localized 4f states of Ce properly, the on-site
Coulomb interaction correction was used”. As suggested by previous
works, the U value for Ce 4f was set to 5.0 eV***°, The optimized lattice
constants of CeO, are a=b=c=5.50A for the cubic phase, in good
agreement with the experimental value (5.411 A). In order to better fit
the experimental conditions, we construct a (111)-orientation interface
model which contains 12 Ce, 36 Hf and 96 O atoms, corresponding to
3 Ce0; layers and 9 HfO, layers. The plane-wave cutoff is set to 550 eV.
We use a 2x2x1 Monkhorst-Pack k-point grid and an energy con-
vergence threshold of 107° eV for structural optimizations. The bottom
6 HfO, layers (half of the HfO, layers) were fixed to their positions in
the defect-free state during structural optimizations and NEB calcula-
tions, while the other layers were allowed to relax. We introduce
oxygen vacancies at different positions in regions that allow relaxation
to determine the migration energy barrier of oxygen vacancies. The
minimum energy paths of oxygen vacancy diffusions are determined
using the nudged elastic band (NEB) technique with VASP transition
state tools®°. The spring constant was set to 5eV/A? and a force con-
vergence criterion of 0.03 eV/A was used. The minimum energy paths
of polarization switching in the CeO,-HfO, system and pure polar HfO,
are determined using the NEB technique implemented in the USPEX
code® " with lattice constants clamped during polarization switching.
The root-mean-square forces on images smaller than 0.03 eV/A is the
halting criteria condition for NEB calculations. The variable elastic
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constant scheme is used, and the spring constant between the neigh-
boring images is set in the range of 3.0-6.0 eV/A%

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data for Figs. 1-4 in this study are provided in the Source
Data file. Source data are provided with this paper.
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