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Deep learning of accurate force field of ferroelectric HfO2
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The discovery of ferroelectricity in HfO2-based thin films opens up new opportunities for using this
silicon-compatible ferroelectric to realize low-power logic circuits and high-density nonvolatile memories. The
functional performances of ferroelectrics are intimately related to their dynamic responses to external stimuli
such as electric fields at finite temperatures. Molecular dynamics is an ideal technique for investigating dynamical
processes on large length and time scales, though its applications to new materials are often hindered by the lim-
ited availability and accuracy of classical force fields. Here we present a deep neural network–based interatomic
force field of HfO2 learned from ab initio data using a concurrent learning procedure. The model potential is
able to predict structural properties such as elastic constants, equation of states, phonon dispersion relationships,
and phase transition barriers of various hafnia polymorphs with accuracy comparable with density functional
theory calculations. The validity of this model potential is further confirmed by the reproduction of experimental
sequences of temperature-driven ferroelectric-paraelectric phase transitions of HfO2 with isobaric-isothermal
ensemble molecular dynamics simulations. We suggest a general approach to extend the model potential of
HfO2 to related material systems including dopants and defects.

DOI: 10.1103/PhysRevB.103.024108

I. INTRODUCTION

Ferroelectrics characterized by the electric field–tunable
polarization, fast switching speed, low power consumption,
and high endurance have been considered as excellent materi-
als to realize high-speed energy-efficient logic and nonvolatile
memory devices [1–3]. However, the poor compatibility of
conventional perovskite ferroelectrics such as Pb(Zr, Ti)O3

with the complementary metal-oxide-semiconductor (CMOS)
technology has made it difficult to downscale the ferroelec-
tric memory to the sub-100 nm regime [4]. Though the first
commercial ferroelectric random-access memory (FeRAM)
appeared in the early 1990s [5], the current state-of-art
technology node remains 130 nm [6]. In comparison, silicon-
based memories such as DRAM and NAND flash memory
have already achieved the 10-nm technology node, delivering
much lower cost per bit than FeRAM [7]. Finding ferro-
electrics with improved CMOS compatibility thus becomes
a key task for the development of ferroelectric memory tech-
nology [7,8].

The discovery of robust nanoscale ferroelectricity in
HfO2-based thin films by NaMLab in 2011 opened up ex-
citing opportunities for ferroelectric-based electronics [9].
Hafnium oxide, being thermodynamically stable on silicon,
has proved CMOS compatibility [10] and is already used as
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the high-permittivity gate insulator in silicon-based field ef-
fect transistors. Experimentally, it was found that an ultrathin
doped HfO2 film of just ≈1 nm can still support switchable
polarization [11], free from the depolarization effect often
presented in thin films of perovskite ferroelectrics [12–14].
Moreover, the current atomic layer deposition technique is
capable of depositing hafnium oxides in high-aspect-ratio
structures on silicon, allowing the fabrication of high-quality
three-dimensional-stackable memory [7,15].

The origin of ferroelectricity in HfO2-based thin films
has been an active research topic since its discovery. De-
spite the relatively simple chemical composition, HfO2 is
known to form many polymorphs. At room temperature,
bulk HfO2 will crystallize in a monoclinic phase (m phase,
space group P21/c), which evolves to a tetragonal phase (t
phase) of space group P42/nmc and subsequently to a cubic
phase of space group Fm3̄m with increasing temperature.
The phase transition of HfO2 at ambient temperature with in-
creasing pressure follows P21/c → Pbca → Pnma [16]. All
these polymorphs have inversion symmetry, thus forbidding
spontaneous polarization. Combined experimental and the-
oretical studies eventually pinpointed the phase responsible
for the ferroelectricity: an orthorhombic phase in the space
group of Pca21 (po phase) [17–21]. However, a series of
first-principles density functional theory (DFT) studies re-
vealed that the po phase has energy higher than the m phase
[18,19,21], whereas simply applying hydrostatic pressures or
epitaxial strains is not enough to make the po phase favored
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FIG. 1. DP-GEN workflow. One cycle of DP-GEN contains three steps: exploration, labeling, and training. Molecular dynamics simula-
tions using a DP model are performed in the exploration step to sample new configurations, among which candidate configurations are selected
by the error indicator. The labeling step undertakes ab initio calculations for the candidate configurations obtained in the exploration step. An
ensemble of new DP models are then retrained using the updated training database.

over the m phase [19,22]. The general consensus now is
that the thermodynamic stability of ferroelectric HfO2 re-
sults from combined effects of various factors such as doping
[23–27], mechanical stress [22,28], oxygen vacancy [29,30],
surface/interface/grain boundary energy [17,21,31–34], elec-
tric fields [22], and substrate orientations [35]. More recently,
it was pointed out that the flat polar phonon bands in HfO2

give rise to intrinsically localized dipoles, responsible for the
robust scale-free ferroelectricity [36].

Like all other ferroelectrics, the functionalities of HfO2-
based ferroelectrics depend on various kinetic and dynamical
processes that often span many scales in time and space. Re-
cent experiments suggest that the thermodynamic arguments
are not enough to explain the emergence of the metastable
po phase [34,37]. Park et al. found that the fraction of the
low-entropy m phase in Hf0.5Zr0.5O2 thin films increases with
increasing temperature, contradictory to the prediction of the
thermodynamic model that a higher temperature will favor
high-entropy phases such as t phase and po phase [34]. The
kinetic effect of phase transitions during the annealing and
cooling processes likely contribute to the formation of the
polar phase [37,38]. Polarization switching is another impor-
tant dynamical process for a ferroelectric as the switching
speed and coercive field dictate the writing speed and power
consumption, respectively [39,40]. However, the atomistic
mechanisms and characteristics of ferroelectric switching in
this fluorite-structure ferroelectric remain largely unexplored,
while experimental measurements reported in literature seem
to support different switching mechanisms [41–43]. There-
fore, it is desirable to have a tool to study the kinetic
and dynamical properties of HfO2-based ferroelectrics at the
atomic level.

First-principles DFT calculations have played an important
role in understanding the structure-property relationship of

ferroelectrics. Nevertheless, the study of finite-temperature
dynamical properties of ferroelectrics is still beyond the
reaches of conventional DFT methods due to the expensive
computational cost. Statistical methods such as molecular
dynamics (MD) simulations are ideal techniques for investi-
gating dynamical processes on larger length/time scales while
providing atomistic details with femtosecond time resolution.
In the case of HfO2, several force fields have already been
developed [44–47]. However, none of them considered the
ferroelectric Pca21 phase during the parametrization, and it
is not yet clear whether those force fields can accurately
describe the structural properties of the ferroelectric phase.
Such situation also reveals the limitation of MD simulations:
applications to new materials systems are often hindered by
the limited availability and accuracy of classical force fields.
Developing a force field is often a tedious process because
of the many-body nature of the potential energy. Most force
fields approximate the interatomic interactions with sets of
relatively simple analytical functions in which the parameters
are fitted to a database of information including quantum
mechanical calculations and/or experimental thermodynamic
properties. The “true” interatomic potential of complex ma-
terials is intrinsically a high-dimensional function, which
can only be roughly approximated by analytical functions
of “ad hoc” forms with a limited number of parameters.
Moreover, the transition metal–oxygen bonds in ferroelectrics
often possess a mixed ionic-covalent character [48] due to the
p-d hybridization, making the force field development even
more challenging [49–51]. Using a more sophisticated energy
function, transferable and accurate reactive force fields for
ferroelectrics such as BaTiO3 have been developed recently
[52,53].

The application of machine learning (ML) to force
field development offers an attractive solution to the
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FIG. 2. Comparison of (a) energies and (b)–(d) atomic forces predicted using the DP model with reference DFT results for configurations
in the final training database. The insets provide the distribution of the absolute error.

accuracy-efficiency dilemma by combining the strengths of
DFT and classical MD. Many ML-based force fields have
been developed for systems of vastly different bonding char-
acters, ranging from organic molecules [54,55], molecular
and condensed water [56–58], to metals [59–61] and alloys
[62–64], semiconductors such as silicon [65–68] and GeTe
[69], and to inorganic halide perovskites [70]. In general, there
are two key ingredients in a ML-based force field: a descriptor
that represents the local atomic environment and a nonlinear
fitting function that maps the descriptor to the local energy
contribution. For example, Behler and Parrinello proposed
to use “symmetry functions” to describe the local geometric
environment of an atom, which were then used as inputs for
an artificial neural network to evaluate the atomic contribution
to the total energy [71]. Bartok et al. developed a Gaussian ap-
proximation potential for silicon using the smooth overlap of
atomic positions kernel [72] that quantifies the similarity be-
tween atomic neighborhoods characterized by neighbor densi-

ties [68]. More recently, the smooth edition of the Deep Poten-
tial (DP) scheme [73,74] employed a faithful and symmetry-
preserving embedding network to parametrize the descriptors,
bypassing the need to fix handcrafted descriptors and enabling
an end-to-end procedure for representing complex chemical
environments in chemical reactions [75], heterogeneous aque-
ous interfaces [76], and high-entropy alloys [77].

In this work, we applied the deep potential molecular dy-
namics (DeePMD) method [73,74] to construct an accurate
and transferable force field for HfO2 by concurrently learning
from results of DFT calculations [61,63]. The resultant DP
model reproduces the DFT results of a wide range of thermo-
dynamic properties of various hafnia polymorphs, including
the ferroelectric Pca21 phase. Notably, the temperature-driven
ferroelectric-paraelectric phase transition of HfO2 is well cap-
tured by MD simulations in the isobaric-isothermal (NPT )
ensemble. The DP predictions of transition barriers between
different phases of HfO2 (P21/c, Pca21, Pbca, and P42/nmc)
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agree well with first-principles results. We believe the current
DP model of HfO2 can be systematically improved and ex-
tended by adding new training data representing new atomic
environments, enabling atomistic modeling of various extrin-
sic effects such as doping and defects.

II. COMPUTATIONAL METHODS

A. Deep potential molecular dynamics

We briefly discuss the key concepts in the DeePMD
method and refer interested readers to the original papers
[73,74] for detailed discussions. The DP model assumes the
total potential energy (E ) can be expressed as a sum of
atomic energies (Ei), E = ∑

i E i. Each atomic energy Ei is
parametrized with a deep neural network (DNN) function
defined as Ei = Eωαi (Ri ), where Ri is the local environment
of atom i in terms of Cartesian coordinates relative to its
neighbors within a cutoff radius rc, αi denotes the chemical
species of the ith atom, and ωαi is the DNN parameter set that
eventually will be optimized by the training procedure. It is
noted that each subnetwork of Ei consists of an embedding
and a fitting neural network. The embedding network maps
Ri to a feature matrix Di that preserves the permutation,
translation, and rotation symmetries of the system, while the
fitting network is a standard feedforward neural network that
maps Di to the atomic energy Ei.

In this work, the smooth version of the DP model was
employed [74] and the DEEPMD-KIT package [78] was used
for training. The cutoff radius is set to 6 Å, and the inverse
distance 1/r decays smoothly from 1 Å to 6 Å to remove the
discontinuity introduced by the cutoff. The embedding net-
work of size (25,50,100) follows the ResNet-like architecture.
The fitting network is composed of three layers, each contain-
ing 240 nodes. As reported in Ref. [73], the loss function is
defined as

L(pε, p f , pξ ) = pε�ε2 + p f

3N

∑

i

|�F i| + pξ

9
‖�ξ‖2, (1)

where � denotes the difference between the DP prediction and
the training data, N is the number of atoms, ε is the energy per
atom, F i is the atomic force of atom i, and ξ is the virial tensor
divided by N . pε , p f , and pξ are tunable prefactors. Here we
increase both pε and pξ from 0.02 to 1. And p f decreases from
1000 to 1.

We note here that the additive structure E = ∑
i E i is an

ansatz of the DP model, and of many other ML-based force
fields. Such an ansatz ensures that the potential energy is
extensive, so that the same model can be used to describe
systems with different number of atoms. The introduction of
the cutoff radius rc makes the interaction range finite and
potentially misses some long-range effect. On the other hand,
in many cases, the finite-range model indeed gives an accu-
racy of ∼1 meV/atom in energy, which is comparable with
the intrinsic error of the functional approximation adopted in
DFT, and is sufficient for most properties of practical interest.
This is indeed the case for the system we study here. The
incorporation of dopants and defects, as well as finite fields,
may require a more delicate treatment of the long-range inter-
actions, which will be left to future investigations.

TABLE I. Lattice parameters (a, b, c) at 0 K calculated by DP
and DFT. DP values in bold. Absolute error in percentage. All phases
are orthogonal, except for the P21/c phase, whose angle parameters
are predicted to be (α, β, γ ) = (90.000◦, 99.678◦, 90.000◦) by both
DP and DFT.

a (Å) b (Å) c (Å)

P21/c 5.138 5.190 5.322
5.146 5.154 5.352
0.156% 0.694% 0.564%

Pbca 5.266 10.093 5.077
5.265 10.094 5.078
0.019% 0.010% 0.020%

Pca21 5.266 5.047 5.077
5.265 5.047 5.078
0.019% 0.000% 0.020%

P21212 5.162 5.181 4.920
5.153 5.230 4.956
0.174% 0.946% 0.732%

Pbcn 4.850 5.833 16.032
4.824 5.839 16.032
0.536% 0.103% 0.000%

Pmn21 3.434 5.179 3.795
3.456 5.254 3.632
0.641% 1.448% 4.295%

P42/nmc 5.074 5.074 5.228
5.075 5.075 5.279
0.020% 0.020% 0.976%

Fm3̄m 5.071 5.071 5.071
5.067 5.067 5.067
0.079% 0.079% 0.079%

B. Deep potential generator

Since ab initio calculations are expensive, to develop a re-
liable ML-based potential, we need a procedure that generates
an optimal and minimal set of training data that covers a wide
range of relevant configurational space. Here we employ the
deep potential generator (DP-GEN) scheme [63]. DP-GEN
is a concurrent learning procedure involving three steps, ex-
ploration, labeling, and training, which form a closed loop
(Fig. 1). Starting with an ab initio database, an ensemble of
DP models are trained with different initial values of ωαi .
In the exploration step, one of these models is used for MD
simulations to explore the configuration space. For each newly
sampled configuration from MD, the ensemble of DP models
will generate an ensemble of predictions (e.g., energies and
atomic forces). Since the ensemble of models only differ in
the initialization of network parameters ωαi , these models will
exhibit nearly identical predictive accuracy for configurations
that are well represented by the training data. Otherwise, they
are expected to give scattered predictions with a considerable
variance. Therefore, the deviation of the model predictions
can be used to formulate the criterion for labeling: a sampled
configuration giving rise to a large model deviation will be
labeled via DFT calculations and will be added to the training
database for training in the next cycle.
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TABLE II. Elastic constants (C), bulk modulus (Bv), shear modulus (Gv), and Young’s modulus (Ev) in GPa calculated by DP and DFT.
DP values in bold. Absolute error in percentage.

P21/c Pbca Pca21 P21212 Pbcn Pmn21 P42/nmc Fm3̄m

C11 337.59 341.01 341.78 212.55 255.83 371.37 366.52 566.83
371.63 340.64 340.63 273.39 214.19 340.66 366.00 571.17
10.08% 0.11% 0.34% 28.62% 16.28% 8.27% 0.14% 0.77%

C22 390.90 395.94 395.93 212.52 298.81 351.82 366.51 566.77
378.18 398.00 398.00 307.07 268.04 281.57 366.00 571.17

3.25% 0.52% 0.52% 44.49% 10.30% 19.27% 0.14% 0.78%

C33 289.95 390.88 390.98 335.16 358.22 338.51 283.58 566.86
369.25 373.00 372.99 357.91 344.82 335.12 241.33 571.17
27.35% 4.57% 4.60% 6.79% 3.74% 1.00% 14.90% 0.76%

C12 165.01 129.59 130.43 225.53 167.25 98.31 233.50 96.60
160.44 129.32 129.32 141.66 148.92 62.80 227.72 99.52

2.77% 0.21% 0.85% 37.19% 10.96% 36.12% 2.48% 3.02%

C13 104.46 95.06 95.38 166.47 152.60 252.60 60.08 96.60
131.64 81.23 81.23 157.19 141.12 285.71 59.18 99.52
26.02% 14.55% 14.84% 5.57% 7.52% 13.11% 1.50% 3.02%

C23 162.15 126.44 126.60 142.04 126.20 176.57 60.07 96.54
160.53 124.77 124.77 166.95 108.44 112.87 59.18 99.52

1.00% 1.32% 1.45% 17.54% 14.07% 36.08% 1.48% 3.09%

C44 81.51 86.31 86.40 −71.27 92.58 −0.39 7.87 72.26
104.31 88.65 88.65 −15.38 85.26 19.90 33.58 65.08
27.97% 2.71% 2.60% 78.00% 7.91% 9.94%

C55 94.55 −31.24 −31.17 −69.80 119.52 161.71 7.87 72.25
89.49 −29.56 −29.56 −64.77 110.51 182.11 33.58 65.08
5.35% 5.38% 5.17% 7.21% 7.54% 12.62% 9.92%

C66 126.44 109.07 109.54 127.28 129.09 74.37 169.99 72.26
116.85 115.00 115.00 125.49 131.31 48.54 182.65 65.08

7.58% 5.44% 4.98% 1.41% 1.72% 34.72% 7.45% 9.94%

Bv 221.30 203.78 204.14 205.83 200.65 235.29 191.30 253.33
224.69 198.47 198.47 210.68 180.48 208.35 185.75 254.77

1.53% 2.61% 2.78% 2.36% 10.05% 11.45% 2.90% 0.57%

Gv 137.40 111.58 81.34 12.32 84.61 99.36 84.71 82.75
124.62 106.26 91.78 40.57 86.57 93.99 86.57 83.18

9.30% 4.77% 12.84% 2.32% 5.40% 2.20% 0.52%

Ev 349.09 286.57 213.74 36.24 222.97 255.85 223.24 222.20
321.44 275.36 236.40 114.38 226.75 240.26 226.75 220.22

7.92% 3.91% 10.60% 1.70% 6.09% 1.57% 0.89%

In detail, the model deviation E is defined as the maximum
standard deviation of the predictions of the atomic forces F i,

E = max
i

√
〈‖F i − 〈F i〉‖2〉, (2)

where 〈· · · 〉 is the average taken over the ensemble of DP
models. In practice, we introduce two thresholds, Elo and Ehi.
Only configurations satisfying Elo < E < Ehi are labeled for
DFT calculations, because a configuration with a small E <

Elo is already well described by the current DP model, whereas
a configuration with a large model deviation E > Ehi is likely
to be highly distorted or unconverged in DFT calculations.

When all sampled configurations have E < Elo, the en-
semble of DP models are considered converged. Here we set
Elo = 0.12 eV/Å and Ehi = 0.25 eV/Å. The described auto-
matic and iterative workflow was performed using the DP-GEN

package.

C. Initial training database and exploration protocol

The initial training database contains structures gen-
erated by randomly perturbing ground-state structures of
P21/c, Pbca, Pca21, and P42/nmc phases of HfO2. We
use 2 × 2 × 2 supercells of 96 atoms for DFT cal-
culations with the Vienna Ab initio Simulation (VASP)
package [79,80]. The projected augmented wave method
[81,82] and the generalized gradient approximation of
Perdew-Burke-Ernzerhof (PBE) [83] type for the exchange-
correlation functional are employed. An energy cut-
off of 600 eV and 2 × 2 × 2 k-grid mesh are suf-
ficient to converge the energy and atomic force. At
the exploration step, the configuration space is sam-
pled by running NPT simulations at various tempera-
tures (from 100 to 3300 K) and pressures (from −50 to
400 kbar). Because the training database will keep incorporat-
ing new configurations generated and labeled on the fly during
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the exploration, we expect the final converged DP model is
not sensitive to the exact construction of the initial training
database.

D. MD simulations of phase transition

The optimized DP model of HfO2 is used to study phase
transitions driven by temperature by performing NPT MD
simulations. We use a 8 × 8 × 8 supercell of 6144 atoms and a
time step of 1 fs. The temperature is controlled via the Nosé-
Hoover thermostat and the pressure is maintained using the
Parrinello-Rahman barostat as implemented in LAMMPS [84].
To model the temperature-driven ferroelectric-paraelectric
phase transition, we carry out NPT simulations with a tem-
perature step of 200 K starting with the Pca21 phase at 400 K.
The final configuration of the simulation at a lower tempera-
ture is used as the initial configuration for the simulation at
a higher temperature. At a given temperature, the equilibrium
run is 10 ps, followed by a production run of 50 ps.

III. RESULTS AND DISCUSSIONS

A. Fitting performance of DP model

Figure 2 compares the energies and atomic forces predicted
by DFT and DP for all the structures in the final training
database (21 768 configurations) with insets showing the dis-
tributions of absolute errors. We find an overall satisfactory
agreement between DP predictions and DFT results with a
mean absolute error (MAE) of 1.6 meV/atom for energy.
This clearly demonstrates that the deep neural network–based
potential model has excellent representability, capable of
learning complex and highly nonlinear energy functional with
little human intervention. The whole DP-GEN process carried
out 61 iterations during which a total number of 41 million
configurations were sampled with only 21 768 (0.05%) con-
figurations selected for labeling. The usage of model deviation
as an error indicator for labeling substantially reduced the
computational cost associated with DFT calculations. We note
that in a conventional supervised learning task, the training,
validation, and testing datasets are drawn from the same data
distribution and are used to avoid/check the generalization
and overfitting problem of a ML model. Here as the final
training dataset is obtained on the fly guided by the error
indicator, we argue a reliable and practical approach to check
the model accuracy (usefulness) is to compare DP-predicted
results with DFT ground truth, as discussed below.

B. Predictions of static properties of hafnia polymorphs

Table I compares the lattice parameters of different phases
of HfO2 optimized with DFT and DP at 0 K, demonstrat-
ing excellent agreement. Elastic constants and moduli are
fundamental material properties as they reflect the strength
of chemical bonds that are intimately related to the second
derivative of the potential energy. We use the DP model to
calculate the elastic properties for a few hafnia polymorphs,
P21/c, Pbca, Pca21, P42/nmc, Fm3̄m, P21212, Pbcn, and
Pmn21, and compare the DP values with DFT results.

As illustrated in Fig. 3 and detailed in Table II, the elastic
constants and moduli from the DP model are comparable

(a)

(b)

FIG. 3. (a) Elastic constants and (b) various moduli (shear, bulk,
and Young’s modulus) of different HfO2 polymorphs.

with the DFT values. Considering that the values of elastic
constants distribute over a wide range from −50 GPa to
600 GPa, the demonstrated agreement between DP and DFT
results highlights the accuracy of the optimized model. It is
noted that the training database does not contain any elastic
property or any structural information of P21212, Pbcn, and
Pmn21 phases explicitly. The ability of the DP model to
predict reasonably well the elastic properties of phases not
included in the training database with quantum mechanical
accuracy highlights its accuracy as well as transferability.
DP and DFT predictions of equations of states (EoSs) of
selective hafnia polymorphs are reported in Fig. 4. It is
clear that DP well reproduce DFT EoSs as well as the or-
der of phase stability: E (P21/c) < E (Pbca) < E (Pca21) <

E (P42/nmc) < E (Fm3̄m). It is remarkable that DP is capable
of capturing the small energy difference between Pbca and
Pca21.
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FIG. 4. Equation of states of different HfO2 polymorphs. Solid
lines and cross points denote DFT and DP results, respectively.
The DP model predicts the correct sequence of phase stability:
E (P21/c) < E (Pbca) < E (Pca21) < E (P42/nmc) < E (Fm3̄m).

To further investigate the vibrational property predicted
by the DP model, we report in Fig. 5 the phonon spectra of
P21/c, Pbca, and Pca21 phases. An accurate prediction of
the phonon spectra requires a good description of the second-
order derivative information around local minima of different
phases, which is not explicitly considered in the DP-GEN
process. We observe a fairly good agreement between DP and
DFT results. Adding perturbed structures for calculating the
phonon spectra to the training dataset should further improve
the DP prediction of this property.

C. Phase transitions

The formation of ferroelectric po phase in HfO2 thin films
was suggested to have a strong kinetic contribution that the
transformation from the metastable t and po phases to the
most stable m phase are suppressed by a kinetic barrier
[34,35,37]. In order to use MD to study phase transitions at
finite temperatures, it is necessary for the force field to ac-
curately predict the solid-solid phase transition barriers. This

is a challenging task as the intermediate structures during the
transition are often strongly distorted relative to equilibrium
structures. Following a similar protocol established in a pre-
vious study [35], we first used the variable-cell nudged elastic
band technique to determine the minimum energy paths
(MEPs) connecting different phases of HfO2 using the USPEX

code [85–87]. The ab initio calculations of force and stress
tensors were performed using the PBE exchange-correlation
functional, consistent with the method used to label struc-
tures in the DP-GEN scheme. Specifically, five solid-solid
phase transitions relevant to the growth of ferroelectric HfO2

thin films were studied: P21/c ↔ P42/nmc, P21/c ↔ Pca21,
Pca21 ↔ P42/nmc, Pbca ↔ P42/nmc, and Pca21 ↔ Pbca.
The energies of structures of identified MEPs were then eval-
uated with the DP model. Figure 6 compares the DP and
DFT energies along the MEPs, showing excellent agreement
between DP and DFT with a MAE of 2.2 meV/atom.

One major focus of this work is to enable MD simulations
of the newly discovered ferroelectric HfO2. We further sim-
ulate the temperature-driven phase transitions starting with
the ferroelectric Pca21 phase using the DP model and a
6144-atom supercell. The local displacement of the oxygen
atom relative to the center of its surrounding Hf4 tetrahedron
is used to gauge the local symmetry breaking [Fig. 7(a)].
Figure 7(b) shows the temperature dependence of probability
distributions of local oxygen displacements along Cartesian
axes. We find that at 600 K, the distributions along the [100]
and [001] directions are symmetric, whereas the distribution
along [010] is asymmetric with one peak centered around
zero and another peak centered around 0.6 Å [Fig. 7(b)
inset]. This is consistent with the structural origin of ferro-
electricity in Pca21 HfO2 that only half of oxygen atoms
are locally displaced along the [010] direction [Fig. 7(a)].
With increasing temperature, the positive peak of d[010] dis-
tribution shifts toward a lower value, indicating a decrease
of total polarization and a displacive phase transition. In
the high-temperature paraelectric phase (2400 K), the d[010]

distribution becomes a single peak. Figure 7(c) shows the tem-
perature dependence of lattice constants and the average value
of d[010], which clearly reveals a ferroelectric-to-paraelectric

FIG. 5. The phonon dispersion relations of three different phases of HfO2. The PHONOPY package [93] was used to produce the results.
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FIG. 6. Comparison of phase transition barriers predicted by
DFT (solid line) and DP (empty circle).

phase transition with the tetragonal P42/nmc phase being the
nonpolar high-temperature phase, agreeing with experimental
observations.

It is well known that the phase transition temperature (Tc)
predicted with MD will suffer from the supercell size effect.
The ferroelectric-paraelectric Tc for single-crystal ferroelec-
tric HfO2 obtained using a 96-atom supercell is ≈1200 K,
comparable with previous ab initio MD simulations using
a supercell of the same size [88,89]. We confirm that sim-
ulations with 6144-atom and 12 000-atom supercells yield
similar Tc of ≈2000 K. This highlights the importance of
using a large supercell to obtain the intrinsic Tc for ferro-
electric HfO2. Experimentally, it was found that the value of
Tc depends sensitively on the dopant concentration and film
thickness [90,91]. Our MD simulations show that the intrinsic
Tc could be substantially higher than the experimental value of
Si-doped HfO2 (≈400 K). This suggests that the ferroelectric
phase of HfO2 likely adopts the form of small grains in thin
films (as a small supercell of HfO2 leads to a lower Tc), and
it is possible to engineer the transition temperature by tuning
the grain size.

D. Computational efficiency

We compared the computational efficiency of the COMB
(charge-optimized many-body) potential of HfO2 [44] and the
DP method. A 5×5×5 supercell with 1500 atoms is adopted
for the speed benchmark, using 24 cores of two Intel Xeon
E5-2650v4 processors (12 core/processor). Such large super-
cell is beyond the capability of conventional DFT methods.
The COMB force field (0.0096 s/step) is about 40 times
faster than the DP model (0.36 s/step). We also note that the
speed of the DP model is 0.1 s/step using only one graphics
card (NVIDIA GeForce RTX 2080Ti), hinting at an improved
efficiency relative to the CPU platform.

E. Developing force field beyond pure HfO2

We make a few general comments here regarding the ap-
proach to systematically extend the applicability of the DP
model of HfO2. It is well known that the ML method works
essentially by interpolating the high-dimensional data con-

(a)

non-polar

polar

(b)

(c)

600 K

FIG. 7. (a) Structure of ferroelectric HfO2 in the space group
Pca21. Hafnium atoms are denoted by golden balls. Oxygen atoms
with zero and nonzero [010] displacements relative to the center of
their surrounding Hf4 tetrahedron are colored in pink and red, respec-
tively. (b) Probability distributions of atomic displacements (d[010])
of O atoms along [010] at various temperatures. The inset shows
the distributions of O atomic displacements along [100], [010], and
[001], respectively, at 600 K. Oxygen atoms have net displacements
along [010]. (c) Temperature-dependent lattice constants and average
value of d[010] of oxygen atoms from DPMD simulations with a
6144-atom supercell. The dashed orange line is obtained using a
96-atom supercell.

tained in the training database. Though it is the DP model with
optimized network parameters that will be used in practice, we
suggest the associated training database is a more fundamental
entity which can be used to retrain a new DP model with
accuracy similar to the current one or any other ML-based
force field if needed. Since the training data is generated
with expensive first-principles calculations, making the train-
ing database available to the public will greatly facilitate the
development of new force fields through community efforts.
In this work, we focus on developing a DP model for pure
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HfO2. Given that extrinsic effects such as dopants and defects
can strongly affect the ferroelectric properties of HfO2, it is
also desirable to have an accurate and efficient model poten-
tial that accounts for these extrinsic effects. Thanks to the
ability of deep neural work to faithfully represent complex
and highly nonlinear potential energy surface, it is expected
that a DP model with improved transferability can be readily
developed by (1) adding new structures with dopants/defects
of interests and (2) setting up appropriate exploration runs to
generate new structures with dopants/defects. In this spirit,
we make our final training database and hyperparameters
available through a public repository, DP Library [92].

IV. CONCLUSIONS

In summary, we applied the DeePMD method to develop
a force field for HfO2 utilizing a concurrent learning scheme
called DP-GEN. The force field is a parametrized deep neural
network that maps local atomic environment to atomic en-
ergy. Using the model deviation of an ensemble of trained
DP models as the indicator for fast labeling not only allevi-
ates the burden of human interventions but also significantly
reduces the total cost of first-principles calculations needed
to obtain an accurate force field. The accuracy and transfer-
ability of the force field are confirmed by comparing a wide

range of materials properties (e.g., elastic constants, EoSs, and
phonon spectra) computed with the DP model to ab initio
results. The DP model can also predict accurately the intrinsic
solid-solid transition barriers between different polymorphs
of hafnia and capture the main features of temperature-driven
phase transitions of the newly discovered ferroelectric phase.
We expect the developed DP model will be a useful tool
to study the kinetic and dynamical properties of ferroelec-
tric HfO2. The development of a high-fidelity force field of
HfO2 demonstrated the ability of DPMD and DP-GEN to
deal with materials systems consisting of complex transition
metal–oxygen bonds. Finally, we suggest that the training
database is a more fundamental entity and its easy access by
the public will greatly facilitate the development of ML-based
force fields.
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