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T-square resistivity without Umklapp scattering
in dilute metallic Bi2O2Se
Jialu Wang1,2, Jing Wu1,2, Tao Wang1,2, Zhuokai Xu1,2, Jifeng Wu1,2, Wanghua Hu1,2, Zhi Ren1,2, Shi Liu 1,2,

Kamran Behnia3 & Xiao Lin 1,2✉

Fermi liquids (FLs) display a quadratic temperature (T) dependent resistivity. This can be

caused by electron-electron (e-e) scattering in presence of inter-band or Umklapp scattering.

However, dilute metallic SrTiO3 was found to display T2 resistivity in absence of either of the

two mechanisms. The presence of soft phonons as possible scattering centers raised the

suspicion that T2 resistivity is not due to e-e scattering. Here, we present the case of Bi2O2Se,

a layered semiconductor with hard phonons, which becomes a dilute metal with a small

single-component Fermi surface upon doping. It displays T2 resistivity well below the

degeneracy temperature in absence of Umklapp and inter-band scattering. We observe a

universal scaling between the T2 resistivity prefactor (A) and the Fermi energy (EF), an

extension of the Kadowaki-Woods plot to dilute metals. Our results imply the absence of a

satisfactory understanding of the ubiquity of e-e T2 resistivity in FLs.
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Collision between electrons of a metal leads to a T-square
resistivity. Postulated in 1930s by Landau and Pomeran-
chuk1 and independently by Baber2, this feature has been

widely documented in elemental3 and strongly correlated4 metals.
At sufficiently low temperature, their resistivity (ρ) follows this
simple expression:

ρ ¼ ρ0 þ AT2 ð1Þ

The residual resistivity, ρ0, depends on defects but, A is an
intrinsic property of the metal, found to scale with the electronic-
specific heat3,4 in dense metals (i.e., those having roughly one
carrier per formula unit). The quadratic temperature dependence
of the phase space is a consequence of the fact that both parti-
cipating electrons reside within a thermal window of the Fermi
level.

In absence of a lattice, an electron–electron collision con-
serves momentum and cannot degrade the charge current. To
generate finite resistivity, such collisions should transfer
momentum to the lattice. There are two known mechanisms:
either it is because there are multiple electron reservoirs
unequally coupled to the lattice2,3, or because the collision is an
Umklapp event5,6. In the first case, the two colliding electrons
have distinct electron masses2. Momentum transfer between
these two distinct reservoirs sets the temperature dependence of
resistivity, and the mass mismatch causes momentum leak to
the lattice thermal bath. In the second case, one of the two
colliding electrons is scattered to the second Brillouin zone and
returns to the first one by transferring a unit vector of the
reciprocal lattice (G) of momentum to the lattice5,6.

The observation of a T2 resistivity in dilute metallic SrTiO3

indicated, however, that our understanding of the microscopic
foundations of this ubiquitous phenomenon is unsatisfactory7.
SrTiO3 is a cubic perovskite at room temperature. It is a quantum
paraelectric and becomes a dilute metal upon introduction of a
tiny concentration of mobile electrons8. Three concentric con-
ducting bands centered at Γ point of the Brillouin zone are suc-
cessively filled9. The quadratic temperature dependence of its
electrical resistivity10,11 persists7 even when its Fermi surface
shrinks to a single pocket12 and none of the two mechanisms
operate. However, it was more recently suggested that this enig-
matic T-square resistivity may be caused by exotic mechanisms
such as scattering by magnetic impurities13 or by two soft
transverse optical phonons (See Supplementary Discussion)14,15.
Such soft phonons are known to play a decisive role in transport
properties of the system, at least at high temperatures16–19.

Here, we report on another dilute metal, doped Bi2O2Se. We
show that it displays T2 resistivity whilst the Hall carrier density
(n) changes by two orders of magnitude and in absence of
interband and Umklapp scattering. Moreover, there are no soft
phonons and the T-square resistivity is restricted to temperatures
well below the degeneracy temperature. The e–e origin of this T-
square resistivity is unambiguous. Comparing the evolution of A
with n and EF in Bi2O2Se and SrTiO3, we uncover a universal
scaling between A and EF in dense and dilute Fermi liquids. Our
results imply that a proper microscopic theory of the link between
electron–electron scattering and T-square resistivity is still
missing.

Results
First-principle calculations of Bi2O2Se single crystal. Stoichio-
metric Bi2O2Se is a layered semiconductor with tetragonal crystal
structure (anti-ThCr2Si2 phase) at room temperature20, shown in
Fig. 1a. Available Bi2O2Se single-crystals are metallic with extre-
mely mobile carriers21–23. The insulator is doped by unavoidable
defects, such as Se or O vacancies and Se–Bi antisite defects24,25.

According to density functional theory (DFT) calculations24, the
conduction band is centered at the Γ point of the Brillouin zone,
following a parabolic dispersion (Fig. 1b and Supplementary
Fig. 1). This has been revealed by angle-resolved photoemission
spectroscopy (ARPES) measurements21,26. The Fermi surface is
an elongated ellipsoid (Fig. 1a) seen by quantum oscillations26.
The comparison of crystal and band structure between Bi2O2Se
and SrTiO3 is summarized in Supplementary Table 1.

Our DFT calculations of phonon spectrum for the tetragonal
phase of Bi2O2Se are in agreement with what was reported
previously27,28. Figure 1c presents the phonon dispersion at
ambient pressure. The absence of imaginary frequencies implies
that the tetragonal phase is dynamically stable. Figure 1d–f shows
the evolution of the calculated local potential and phonon
frequencies with hydrostatic pressure. Clearly, the single-well
local potential at ambient pressure is different from a quantum
paraelectric, where the local potential is a shallow double-well and
the ferroelectric phase is aborted due to quantum tunneling
between two local minima of the well. In a quantum paraelectric,
the soft mode is very sensitive to hydrostatic pressure. For
example, in PbTe a well-known quantum paraelectric, the soft
mode frequency almost triples by reducing the lattice constant (a)
by 1%29. In contrast, all three optical modes change moderately
by reducing a, in Fig. 1f. The lowest mode (TO1) hardens only by
20% by a similar reduction of a. We also note that a large negative
pressure (≈−5 GPa) is required to make the system ferroelectric.
These observations rule out the proximity to a ferroelectric
instability, excluding the presence of soft phonons.

Quadratic temperature dependence of resistivity. Figure 2a
shows the temperature dependence of resistivity ρ(T) in our Bi2O2Se
samples with various n (See Supplementary Fig. 2, Supplementary
Fig. 3 and Supplementary Table 2 for more information). We note
that our data (obtained for n < 1 × 1019 cm−3) smoothly joins what
was recently reported for n= 1.1 × 1019 cm−322. Upon cooling from
room temperature to 1.8 K, resistivity decreases by two orders of
magnitude, comparable to what is seen in doped quantum para-
electrics such as SrTiO3, KTaO3, and PbTe16.

Panels b–e of Fig. 2 document the low-temperature quadratic
temperature dependence of resistivity. It persists down to the
lowest temperatures in all the samples. Equation (1) holds below a
characteristic temperature (dubbed Tquad). As seen in Fig. 2f,
Tquad is an order of magnitude lower than TF, the degeneracy
temperature of the fermionic system (extracted from our study of
quantum oscillations described below). The relevance of Tquad≪
TF inequality in Bi2O2Se contrasts with what was seen in SrTiO3

7.
Only well below the degeneracy temperature, one expects the
phase space of the fermion-fermion scattering to be quadratic
temperature. Therefore, one reason to question the attribution of
T-square resistivity to e–e scattering, which was raised in the case
of SrTiO3, is absent.

Figure 2g presents the evolution of the T2 prefactor (A) with n
for Bi2O2Se. For comparison, the relevant data for doped SrTiO3

and KTaO3 are also shown. In both cases, A decreases with
increasing n. While A(n) is more fluctuating in Bi2O2Se than in
SrTiO3, the two slopes (nA

dA
dn) are close to each other. At similar n,

the magnitude of A differs by more than one order of magnitude
lower. We will see below that this arises because of the difference
in the magnitude of the effective electron mass, which sets the
Fermi energy at a given carrier density.

Thus, Bi2O2Se is the second metallic system in which T-square
resistivity is observed in presence of a single-component and
small Fermi surface. The absence of multiple pockets leaves no
place for interband scattering. The smallness of the Fermi surface
excludes Umkalpp events (See below for quantitative discussion).
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Two features make the theoretical challenge thrown down by
Bi2O2Se more solid than the one presented by SrTiO3. First of all,
since Tquad≪ TF, one objection to associating T-square resistivity
and e–e scattering vanishes. Moreover, the absence of any exotic
soft phonons, rules out their possible role as scattering
centers14,15.

Having shown that T-square resistivity is present in Bi2O2Se
like in SrTiO3 without objections ascribing it to e–e collisions, let
us consider the relevance of the expression previously used7 for
the T-square prefactor:

A ¼ _

e2
kB
EF

� �2

lquad ð2Þ

Here, ℏ is Planck’s constant divided by 2π, e is the electron
charge, kB is the Boltzmann constant and lquad is a material-
dependent characteristic length, which arises uniquely due to a
dimensional analysis. Such an examination requires to know EF at
a given n. For this, we performed a detailed study of quantum
oscillations.

Resistive quantum oscillations. Figure 3a, b shows that in
presence of magnetic field, resistivity shows quantum oscillations
with a single frequency for both in-plane and out-of-plane
orientations of the magnetic field. When n ≈ 4.3 × 1018 cm−3, the
oscillation frequency is FH∥c ≈ 51 T and FH∥ab ≈ 93 T. This
implies that the Fermi surface is an ellipsoid at the center of the

Brillouin zone. The Fermi surface anisotropy α ¼ FHkab
FHkc

¼ 1:8. This

is in excellent agreement with our theoretical calculations
(Fig. 1b), which finds that the dispersion along Γ-X and Γ-Z with
the value of anisotropy (α) differ by 1.75. Similar data for other
samples are presented in the Supplementary Fig. 4 and sum-
marized in Supplementary Table 3.

The volume of the ellipsoidal Fermi pocket implies a carrier
concentration nSdH= 3.8 × 1018 cm−3, close to the Hall carrier

concentration. The numbers remain close to each other when n >
1018 cm−3 (see Supplementary Table 3). At very low densities,
nSdH starts to fall below n, which may indicate that the single
Fermi sea begins to fall apart to isolated lakes due to insufficient
homogeneity in doping.

The small size of the Fermi surface excludes the possible
occurrence of Umklapp event, which requires a Fermi wave vector
larger than one-fourth of the smallest reciprocal lattice vector, G.
For Bi2O2Se, the smallest G is along c-axis, Gc ¼ 2π

c � 5:17 nm−1,
given the lattice constant c= 12.16Å of the tetragonal unit cell.
Then the threshold carrier density for Umklapp scattering (nU) can
be estimated to be nU ¼ 1

3π2 k
2
FakFc ¼ 3 ´ 1019 cm−3 with kFc ¼ Gc

4

and α ¼ kFc
kFa

� 1:8 (kFc and kFa are Fermi wave vector along c-axis
and a-axis). For n < nU, no Umklapp scattering is expected, which
includes our range of study and beyond.

Figure 3c shows how quantum oscillations are damped with
increasing temperature. This allows us to extract the effective
mass m* using the Lifshitz–Kosevich (L–K) formula:

RL ¼
X

sinhðXÞ ; X ¼ ηTm�

H
ð3Þ

where η ¼ 2π2kB
e_ . We find an in-plane effective electron mass

m�
Hkc � 0:17me, in agreement with previous reports21,22,26, and

an out-of-plane mass m�
Hkab � 0:25me (me is the free electron

mass). As expected, the ratio of these cyclotron masses is close to
the ratio of the two ellipsoid axes.

Figure 3d shows EF ¼ _kFabð Þ2
2m�

Hkc
as a function of kFab (the in-plane

wave vector). Each data point represents a different sample. As
seen in Fig. 3e, the magnitude of the effective mass and Fermi
surface anisotropy remain unchanged with doping. The data
imply that the conducting band dispersion is parabolic. We also
note that the effective mass resolved here (m*= 0.17 ± 0.1me, see
Table S1) is only 1.3 ± 0.1 larger than the DFT calculated bare

a
c e

f

b

d

Fig. 1 Electronic and phonon properties of Bi2O2Se from first-principle calculations. a Unit cell of the tetragonal phase and sketch of the ellipsoid Fermi
surface at the Γ point of Brillouin zone. b Electronic band structures without spin-orbit coupling along high-symmetry lines of the Brillouin zone of the body-
centered tetragonal unit cell. c Phonon dispersion at ambient pressure. d Local potential energy surface with respect to ion displacement along the lowest
optical phonon mode, which changes from single-well to double-well by exerting large negative hydrostatic pressure. e One-to-one correspondence
between the lattice parameter (a) and the hydrostatic pressure (P). f Frequency evolution of the three lowest optical modes with a, including two
transverse modes: TO1 (blue triangles) and TO2 (magenta circles) and a longitudinal mode: LO (black squares) . The lattice constant at ambient pressure
(3.873Å) is taken to be the optimized value from DFT calculations and the experimental lattice parameter is 3.88Å.
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mass of mb= 0.125me. In contrast, in SrTiO3, band dispersion of
the lower band is nonparabolic and there is a significant mass
enhancement due to coupling to phonons7,11. This comparison
highlights the simplicity of the case of Bi2O2Se where any
polaronic effect seems to be absent.

Scaling between A and EF. With the help of Fig. 3d, we can map
n to EF and translate the data of Fig. 2g in a new figure (Fig. 4a),
which compares the evolution of A with EF in Bi2O2Se and in
SrTiO3−δ. Remarkably, the two sets of data join each other.
Because of the lightness of its electrons, Bi2O2Se has a Fermi
energy ten times higher than SrTiO3−δ at the same carrier
density.

In Fig. 4b, we include the new Bi2O2Se data in a universal plot
of A v.s. EF. The data for other materials are taken from
references7,8,30 and are summarized in Supplementary Table 4–6.
Note that for all anisotropic conductors including Bi2O2Se, the
plot shows the prefactor in the plane with the higher conductivity.

This plot is an extension of the original Kadowaki–Woods
plot4 to dilute Fermi liquids. In a dense metal, the electronic-
specific heat (in molar units) is an accurate measure of the Fermi
energy. In a dilute metal, on the other hand, the molar units for
atoms and electrons differ by orders of magnitude and therefore,
one cannot use the electronic-specific heat as a measure of the
Fermi energy.

Kadowaki and Woods observed originally that correlation
between A and γ2 in heavy-electron metals, such A/γ2 ≈ 10 μΩ.

a

f

g

e

d

c

b

et al.

et al.

Fig. 2 Temperature-dependent resistivity of Bi2O2Se at various Hall carrier concentrations (n). a Resistivity as a function of temperature from 1.8–300K
on a Log–Log scale. The data at n≈ 1.1 × 1019 cm−3 are from ref. 22. b–e The low-T resistivity as a function of quadratic temperature. The linear lines are fits
by Eq. (1). f TF and Tquad as a function of n. Tquad is a characteristic temperature above which the resistivity deviates from the T2 behavior. TF and Tquad are
represented by solid magenta circles and open blue squares respectively. The error bars denote uncertainty in determining Tquad from b–e. g The slope of
T2 resistivity (A) as a function of n for Bi2O2Se: solid magenta circles, compared with doped SrTiO3 (SrTiO3−δ

7: open blue diamonds, SrTi1−xNbxTiO3
7,11:

open orange squares, and Sr1−xLaxTiO3
10: open black circles) and K1−xBaxTaOx

45: solid olive hexagons. The dashed line is a guide to eyes. The inset shows
the variation of residual resistivity with increasing n for Bi2O2Se.
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cm.K2.mol2.J−24 and contrasted it with a similar ratio noticed by
Rice in elemental metals (A/γ2 ≈ 0.4 μΩ.cm.K2.mol2.J−2)3, where
γ is the electronic-specific heat coefficient. Subsequent studies31

brought new data indicating that these ratios define two rough
and lower boundaries (and recently even 3He has been shown to
be on the Kadowaki–Woods plot32).

According to Fig. 4b, this 25-fold difference in the A/γ2

magnitude is equivalent to a statement on the boundaries of
lquad, which lies between 1.6 and 40 nm across systems whose
carrier concentration and Fermi energy differ by many orders of
magnitude. This is in agreement with a recent observation by
Kurita et al.30. They put under scrutiny the correlation between A
and the low-temperature slope of the Seebeck efficient (which
remains a measure of the Fermi energy even in dilute systems33)
and found that in a variety of systems lquad ≈ 4 nm30.

lquad is a phenomenological quantity coming out of dimen-
sional analysis. Nevertheless, it is well-defined and equal to the
product of the Fermi wave vector and the cross-section of
electron–electron collision7,34. This implies that its boundaries
are meaningful and beg for an explanation.

Discussion
Most previous theoretical attempts focus on isolated cases and did
not seek a global scenario. Let us consider briefly their relevance
to our data. One scenario for T2 resistivity, proposed decades ago,
invokes inelastic electron-impurity scattering and its interplay
with electron–phonon interaction35–37. Such an effect has been
reported in several impure metals. It appears too weak to account
for the T2 term in Bi2O2Se where A

ρ0
� 10�3 K−2. Pal and co-

authors proposed that non-Galilean invariant FLs can display T2

a c

db

e

Fig. 3 Shubnikov-de Haas effect for Bi2O2Se at n≈ 4.3 × 1018 cm−3. a, b Resistive quantum oscillations as a function of inverse field (1/H) with H∥ c and
H∥ ab, respectively. Δρ= ρ− ρb where ρb is a fitted background of the magneto-resistance. c Normalized amplitude of oscillations as a function of T/H for
two field directions. The dashed lines are the Lifshitz–Kosevich fits. d Fermi energy as a function of the in-plane Fermi wave vector for different samples,
suggestive of a conducting band dispersion. The dashed line is a parabolic fit. e Evolution of the oscillation frequency (F) and the effective mass (m*) with n
in different samples for field along c-axis and ab-plane, respectively. FH∥c and FH∥ab are denoted by solid black squares and open black circles, respectively.
m�

Hkc and m�
Hkab are denoted by solid magenta squares and open magenta circles, respectively.
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resistivity even in the absence of Umklapp events38. However, this
scenario for T2 resistivity does not expect it in a systems with
parabolic dispersion such as Bi2O2Se. Quantum interference near
a ferromagnetic quantum critical point (QCP) can induce a
resistivity proportional to T2lnT39. This is inapplicable to
Bi2O2Se, which is not close to any QCP. Lucas pointed to
hydrodynamic flow of electrons in random magnetic fields as a
possible source of T2 resistivity13 in SrTiO3, speculating that
oxygen vacancies can be magnetic there. Its relevance to a non-
magnetic systems such as Bi2O2Se is quite unlikely.

In summary, we find that the fermiology of dilute metallic
Bi2O2Se is such that interband or Umklapp scattering cannot
happen. Nevertheless, there is a T2 resistivity unambiguously
caused by electron–electron scattering. We find a universal link
between Fermi energy and the prefactor of T-square resistivity,
which persists across various Fermi liquids. We conclude that a
proper understanding of the microscopic origin of T-square
resistivity in Fermi liquids is missing.

Methods
Sample growth. Bi2O2Se poly-crystals were synthesized through solid state reac-
tion with stoichiometric Bi (5N), Se (5N), and Bi2O3 (5N) powders of high purity.

The mixed materials are sealed in an evacuated quartz tube and heated in an oven
at 823K for 24 h. The single-crystalline phase was obtained through the chemical
vapor transport (CVT) method by using poly-crystals as precursors. The sealed
quartz tubes were placed in a horizontal furnace at a temperature gradient from
1123 to 1023 K over one week. The resulting single-crystals are shiny and air-
stable. Note that, we didn’t use transport agents such as I2, in order to avoid
unintentional doping. Samples with n below and above 1018 cm−3 are cleaved from
two individual batches, respectively. Hence, we may expect a moderate inhomo-
geneous distribution of carrier concentrations in each sample.

Experiments. X-ray diffraction patterns were performed using a Bruker D8
Advanced X-ray diffractometer with Cu Kα radiation at room temperature. The
composition of samples was determined by an energy-dispersive X-ray (EDX)
spectrometer affiliated to a Zeiss field emission scanning electron microscope
(SEM). The transport measurements were done by a standard four-terminal
method in Quantum Design PPMS-Dynacool equipped with 14T magnet. Ohmic
contacts were obtained by evaporating gold pad to samples before attaching wires
with silver paste.

DFT calculations. All first-principles calculations were carried out using density
functional theory (DFT) as implemented in Quantum Espresso40. The generalized
gradient approximation (GGA) of Perdew–Burke–Ernzerhof revised for solids
(PBEsol) type41 was used to describe the exchange-correlation energy. We used
ultrasoft pseudopotentials from the Garrity, Bennett, Rabe, Vanderbilt (GBRV)
high-throughput pseudopotential set42 and a plane-wave energy cutoff of 50 Ry
and charge density cutoff of 250 Ry. The full phonon spectrum was calculated

a

b

Fig. 4 Universal scaling between the slope of T2 resistivity (A) and Fermi energy (EF). a Variation of A with EF on a Log–Log scale for Bi2O2Se: open
magenta circles, compared to SrTiO3: solid blue squares7. b A− EF plot across various FLs, such as Metals: solid dark cyan triangles; strongly correlated
metals including heavy Fermions: solid dark yellow diamonds and YBCO (YBa2Cu3Oy), Sr2RuO4, Ca3Co4O9: solid black pentagons; semimetals including Bi,
Bi0.96Sb0.04, graphite, WTe2, Cd3As2, and ZrTe5: open wine hexagons; doped semiconductors including Bi2O2Se, SrTiO3, BaSnO3: open purple squares,
CuRhO2: solid orange triangles, EuTiO3: solid navy star7,8,30,46,47. Most of the data are bounded by the two dashed lines set by Kadowaki–Woods and Rice,
corresponding to a material-dependent length scale lquad≈ 40 and 1.6 nm, respectively. The error bars for the data of Bi2O2Se denote the uncertainty in
determining A and EF in processing the data. In solids with multiple Fermi surfaces, a horizontal bar links two data points representing the extrema in EF.
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using the supercell approach as implemented in phonopy43 with the nonanalytical
term correction at the Γ point included. As Bi is known for its strong spin-orbit
coupling (SOC), the electronic band structure with SOC was calculated using the
fully relativistic pseudopotentials taken from pslibrary (version 1.0.0)44. Both
electronic band structure and phonon spectrum were calculated along the high-
symmetry lines of the Brillouin zone of a body-centered tetragonal unit cell.

Data availability
The data that support the findings of this study are included in this article and its
supplementary information file and are available from the corresponding author upon
reasonable request.
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