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With their celebrated structural and chemical flexibility, perovskite oxides have served as a highly adaptable
material platform for exploring emergent phenomena arising from the interplay between different degrees
of freedom. Molecular dynamics (MD) simulations leveraging classical force fields, commonly depicted as
parametrized analytical functions, have made significant contributions in elucidating the atomistic dynamics
and structural properties of crystalline solids including perovskite oxides. However, the force fields currently
available for solids are rather specific and offer limited transferability, making it time-consuming to use MD
to study new materials systems since a new force field must be parametrized and tested first. The lack of
a generalized force field applicable to a broad spectrum of solid materials hinders the facile deployment of
MD in computer-aided materials discovery (CAMD). Here, by utilizing a deep-neural network with a self-
attention scheme, we have developed a unified force field (UniPero) that enables MD simulations of perovskite
oxides involving 14 metal elements and conceivably their solid solutions with arbitrary compositions. Notably,
isobaric-isothermal ensemble MD simulations with this model potential accurately predict the experimental
temperature-driven phase transition sequences for several markedly different ferroelectric oxides, including
a six-element ternary solid solution Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3. We believe the universal
interatomic potential along with the training database, proposed regression tests, and the auto-testing workflow,
all released publicly, will pave the way for a systematic improvement and extension of a unified force field for
solids, potentially heralding a new era in CAMD.

DOI: 10.1103/PhysRevB.108.L180104

Classical force fields, including CHARMM [1], AMBER
[2], and GROMOS [3], which are capable of accurately de-
scribing the interatomic interactions within key biological
molecules such as amino acids and nucleic acids, have played
a pivotal role in expanding the use of molecular dynamics
(MD) simulations in computer-aided drug design (CADD).
These force fields enabled large-scale simulations of atomic
and molecular movements in biological systems with re-
markable efficiency and precision, greatly facilitating detailed
studies of drug-receptor interactions [4], protein conforma-
tional changes [5,6], binding affinities [7], and the search
for lead compounds [8]; they are now indispensable tools in
the pursuit of new drugs and therapeutics [9,10]. In contrast,
although MD simulations have been successful in elucidating
the properties of various types of solids by offering atomic-
level insights, their integration into computer-aided materials
discovery (CAMD) has not yet achieved the same level of
industry-wide adoption as in CADD. This disparity is primar-
ily due to the lack of a generalized force field applicable to a
wide range of solid materials.

*These authors contributed equally to this work.
†liushi@westlake.edu.cn

Many force fields for crystalline solids are tailored for a
specific material or a narrow group of materials, covering a
limited chemical space [11–18]. While the reactive force-field
(ReaxFF) interatomic potential allows for element-specific
parametrization and is commonly viewed as possessing strong
transferability [19], its developers still caution against arbi-
trarily combining parameter sets in anticipation of consistent
predictive power [20]. Moreover, the usage of a highly so-
phisticated energy function containing a large number of
empirical parameters (as seen in ReaxFF) makes it chal-
lenging to parametrize force fields for new materials. In
this work, taking ABO3-type perovskite oxides as an ex-
ample, we demonstrate that a deep neural network-based
model, namely deep potential (DP) [21] with a novel at-
tention mechanism, referred to as DPA-1 [22], exhibits the
required representability and transferability for the devel-
opment of a universal interatomic potential. By adopting
the strategy of “modular development of deep potential”
(ModDP) [23] and relying solely on ab initio training data,
we have achieved a unified force field that enables MD
simulations for diverse perovskite oxides comprising 14 dif-
ferent metal elements and is conceivably adaptable for their
solid solutions of any composition. For instance, we report
the first large-scale MD simulations of a six-element ternary
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solid solution Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3

(PIN-PMN-PT), which is a relaxor ferroelectric possessing
superior piezoelectric properties [24,25].

The ABO3-type perovskite oxide is chosen as the model
system because of its role as an exceptionally versatile
material platform. The adaptability in chemical, structural,
and compositional variations grants a unique capability to
fine-tune interactions such as electron-phonon coupling, crys-
tal field, and spin-orbit interaction, the competitions among
which often dictate the functional properties of perovskite ox-
ides [26,27]. Given these intricacies, it becomes challenging,
if not outright impractical, to rely on a force field with a
fixed analytical structure and a limited set of parameters to
create a generalized force field for perovskite oxides spanning
a broad chemical and compositional range. To address this
issue, we adopt the DP model and its extension augmented
with a self-attention scheme.

The DP model, based on a deep neural network with
the number of learnable parameters on the order of 106,
offers a robust mathematical structure to represent highly
nonlinear and complex interatomic interactions while bypass-
ing the need to handcraft descriptors that represent local
atomic environments [21]. Specifically, the DP model fea-
tures a symmetry-preserving embedding network that maps
an atom’s local environment to inputs for a fitting neural
network which then outputs the atomic energy; the sum of
atomic energies yields the total energy. This approach is a
manifestation of the embedded atom concept, capturing the
many-body character of interatomic interactions. Therefore,
the DP model trained using density functional theory (DFT)
total energies implicitly accounts for various types of interac-
tions including the long-range interactions. More recently, the
DPA-1 model [22] has introduced an element-type embedding
net and integrated a self-attention mechanism. This mecha-
nism excels in modeling the importance of neighboring atoms
and reweighting the interactions among them based on both
distance and angular information, thus allowing for the mixing
and communication within the latent space of the embedding
parameters of elements and structures. As a result, the DPA-1
model achieves satisfactory transferability to unseen systems
with varied elemental compositions [22], fulfilling the essen-
tial criteria for constructing a universal force field applicable
to solids comprising multiple elements.

To develop a DPA-1 model capable of representing diverse
element types and compositions that the perovskite structure
can support, the construction of a comprehensive training
database becomes pivotal. For simple materials systems com-
prising two or three elements, the DP-GEN scheme [28,29]
for data generation is streamlined and largely autonomous,
requiring little human involvement. This concurrent learn-
ing procedure iteratively explores the configuration space
(by running MD simulations) using one of the four models
trained with existing data. It then labels only those MD-
sampled configurations that exhibit high uncertainty levels,
determined by the maximum standard deviation of predic-
tions from the four models. The energies and forces of these
newly labeled configurations, computed using first-principles
DFT, are subsequently incorporated into the training database
for the next learning cycle. The iteration stops when
all configurations sampled from MD simulations meet a

FIG. 1. (a) Workflow for the development of a universal force
field of perovskite oxides following the ModDP protocol. Compar-
ison of (b) relative energies �E and (c) atomic forces predicted
using the DPA-1 model with reference DFT results for ≈20 000
configurations in the final training database. The inset shows the
distribution of the absolute error.

certain standard of accuracy across all four models. More
details regarding DP-GEN can be found in previous studies
[29–31]. However, the robustness of the DP-GEN scheme is
limited when constructing the training database for complex
oxides with diverse element types and compositions.

In previous work, we demonstrated that the ModDP pro-
tocol facilitates a systematic development and improvement
of DP models for complex oxide solid solutions [23]. At
its core, ModDP embodies the concepts of “data reusing”
and “divide and conquer”: the converged training database
associated with an end-member material is treated as an
independent module, and is then reused to train the DP
model of solid solutions derived from these end members.
Following the same spirit, we devise a procedure that pro-
gressively introduces perovskites with increasing complexity
(number of element types) to enhance the capability of DPA-1
level by level. The workflow of the force field development
procedure that leads to a universal interatomic potential is
depicted in Fig. 1(a). The initial database contains ≈1000
configurations of 26 different types of perovskites, involv-
ing ≈200 compositions and 14 metal elements. It is noted
that some data for PbTiO3 and SrTiO3 were taken from a
published database [23], and we did not intentionally design
the initial database, aiming to minimize human intervention.
We first use the standard DP-GEN scheme to converge a
DPA-1 model suited for three-element (including oxygen)
perovskite oxides such as PbTiO3, BaTiO3, CaTiO3, SrTiO3,
and NaNbO3. Subsequently, the converged training database
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serves as the starting point for DP-GEN to improve DPA-
1 for four-element perovskite systems like PbZr1−xTixO3

and Pb(Mg1/3Nb2/3)O3. Ultimately, we achieve a converged
DPA-1 model for six-element perovskite systems, including
the ternary solid solution of PIN-PMN-PT. As detailed below,
the final DPA-1 model serves as a universal interatomic poten-
tial (named as UniPero), capable of modeling a wide variety
of perovskites with MD simulations.

All DFT calculations are performed with Atomic-orbital
Based Ab-initio Computation at UStc (ABACUS) package
[32,33] using numerical atomic orbitals (NAOs) and SG15-
optimized norm-conserving Vanderbilt (ONCV) pseudopo-
tentials [34]. The Perdew-Burke-Ernzerhof revised for solids
(PBEsol) [35] within the generalized gradient approxima-
tion is chosen as the exchange-correlation functional, and the
double-ζ plus polarization functions (DZP) with a plane-wave
cutoff energy of 100 Ry is employed as the NAO basis set. The
energies and forces are computed with a 0.1 Bohr−1 k-point
spacing and an energy convergence threshold of 1.0 × 10−7

Ry. All isobaric-isothermal (NPT ) ensemble MD simulations
are performed using LAMMPS [36], with a time step of 2 fs and
the temperature controlled via the Nosé-Hoover thermostat
and the pressure controlled by the Parrinello-Rahman baro-
stat. When simulating temperature-driven phase transitions,
the perovskite systems are modeled with a 10 × 10 × 10 su-
percell (assuming a five-atom unit cell) consisting of 5000
atoms, except for PIN-PMN-PT which is modeled with a
20 × 20 × 20 supercell consisting of 40 000 atoms. The
smooth edition of the DP model (with a cutoff radius of
6 Å and the smoothing starting at 0.5 Å) with an attention
scheme DPA-1 is adopted. The DEEPMD-KIT package [37] is
used in the training cycle of DP-GEN. The basic networks
of DPA-1 comprise the embedding and fitting networks, both
of which utilize ResNet architectures with default settings.
Additionally, DPA-1 also incorporates a one-hot type em-
bedding network with a size of 8, as well as a two-layer
attention mechanism possessing 128 hidden dimensions dur-
ing the scaled-dot product attention computation. To enhance
reproducibility, we have made our final training database and
hyperparameters accessible via a public repository [38].

The final training database contains 19 288 configurations.
We note that DPA-1 aims to reproduce DFT total energies,
which inherently vary significantly between different materi-
als. For configurations in the database, the DFT total energies
span a range of an astonishing ≈400 eV/atom (including
an element-specific constant energy shift). Impressively, the
DPA-1 model has a mean absolute error (MAE) of 1.75
meV/atom for the total energy, highlighting its remarkable
representability. To better illustrate the fitting performance,
we compare the energy differences (�E ) predicted by DPA-1
with DFT values. For a specific composition, a configuration
is (arbitrarily) chosen as the reference; the �E values are then
computed relative to the total energy of this chosen reference
configuration. As shown in Fig. 1(b), DPA-1 well reproduces
DFT values of �E . The predictions from DPA-1 for atomic
force are in satisfactory agreement with DFT results as well,
achieving a MAE of 0.054 eV/Å [Fig. 1(c)].

Employing a concurrent learning approach like DP-GEN
allows the training database to be updated efficiently and
iteratively. As a result, we do not have the typical validation

or testing datasets commonly associated with conventional
supervised learning. We propose two sets of tasks to evaluate
DPA-1′s applicability for perovskite oxides. For the first set
of testing jobs (denoted as Task I), ab initio molecular dy-
namics (AIMD) simulations are performed at three specific
temperatures (300, 450, 900 K) for a few picoseconds. DPA-1
is then employed to evaluate the energies for configurations
along these AIMD trajectories. The objective is to ascertain
DPA-1′s accuracy in predicting energies for configurations
sampled by AIMD at finite temperatures. As illustrated in
Fig. 2(a) which uses PIN-PMN-PT as an example, the en-
ergy evolution trajectory obtained with DPA-1 closely follows
that from AIMD at three different temperatures, confirmed
by Pearson correlation coefficients of 0.93, 0.95, and 0.99,
respectively. The second set of evaluations (Task II) is to
generate classical DPMD trajectories using DPA-1 at varying
temperatures, the energies of configurations along which are
subsequently determined with DFT. This task is designed
to validate whether classical MD trajectories from DPA-1
properly sample the relevant configuration spaces at finite
temperatures. The applicability of DPA-1 is gauged by the
MAEs of energies and atomic forces for all the configurations
generated from these two sets of tasks. We have selected 10
representative perovskite oxides for testing: BaTiO3, PbTiO3,
SrTiO3, Ba0.5Sr0.5TiO3, K0.5Na0.5NbO3, NaNbO3–BaTiO3,
PbZr0.5Ti0.5O3, BaZr0.2Ti0.8O3–Ba0.3Ca0.7TiO3, PMN–PT,
and PIN–PMN–PT. It is evident from Fig. 2(c) (for Task I) and
Fig. 2(d) (for Task II) that the DPA-1 model well reproduces
the energy evolution from AIMD and performs appropriate
sampling at finite temperatures for markedly different per-
ovskite systems. The MAE for energy is lower than 1.45
meV/atom, and that for atomic force is below 0.052 eV/Å.

With DPA-1′s capability to faithfully capture the complex
and highly nonlinear potential energy surfaces involving di-
verse element types, we expect developing a DPA-1 model
with further enhanced transferability and accuracy can be
achieved by introducing more data from new materials
systems into the current training database. Therefore, the pro-
posed tasks, which are readily automatable, serve as suitable
regression tests (a common practice in software development)
for the continuous improvement of the DPA-1 model. We have
implemented an auto-testing workflow based on an online
platform (Bohrium Notebook) [38] that allows real-time ac-
cess to our DPA-1 model, cloud-based computing resources,
and data analysis scripts. This initiative aims to streamline
force field development and foster collaborative contributions
from the community.

A definitive test of the applicability of the developed
DPA-1-based universal interatomic potential is to examine
temperature-driven phase transitions in ferroelectric per-
ovskites. As summarized in Fig. 3, a single DPA-1 model,
without any tuning, successfully reproduces the experimental
sequences of phase transitions for lead-based ferroelectrics
(PbTiO3, Pb0.5Sr0.5TiO3, and PbZr0.5Ti0.5O3), lead-free fer-
roelectrics (BaTiO3, KNbO3, and K0.5Na0.5NbO3), quantum
paraelectric SrTiO3, and tertiary solid solutions (0.29PIN–
0.45PMN–0.26PT and 0.36PIN–0.36PMN–0.28PT). For ex-
ample, the temperature-dependent lattice constants obtained
from NPT MD simulations reveal a tetragonal (T , space
group P4mm) to cubic (C, space group Pm3̄m) transition at
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FIG. 2. Proposed tasks to evaluate the applicability of UniPero using PIN–PMN–PT as an example. (a) Task I. The energies of configura-
tions sampled by AIMD at three different temperatures are checked by DPA-1. (b) Task II. The energies of configurations sampled by classical
MD with DPA-1 are checked by DFT. Comparison of relative energies and atomic forces for configurations of 10 representative perovskite
oxides generated from (c) Task I and (d) Task II.

≈550 K in PbTiO3 [Fig. 3(a)], whereas the transition temper-
ature Tc drops to ≈280 K in the A-site doped solid solution,
Pb0.5Sr0.5TiO3 [Fig. 3(d)]. In comparison, MD simulations
using DPA-1 predict that the B-site doped solid solution
PbZr0.5Ti0.5O3 adopts a rhombohedral phase (R, space group
R3m) at low temperatures, and it undergoes rhombohedral-
tetragonal-cubic (R-T -C) phase transitions as the temperature
increases [Fig. 3(g)], consistent with experimental observa-
tions [39,40]. SrTiO3 is a well-known quantum paraelectric
that exhibits a temperature-driven tetragonal-cubic transition
(I4/mcm → Pm3̄m) characterized by a decrease in the TiO6

octahedral tilt angle. This phase transition, corresponding to
a tiny energy barrier of ≈1 meV/atom, is reproduced by
DPA-1 [Fig. 3(b)], and the theoretical value of Tc is 150 K,
which is comparable to the experimental value of 105 K
[41]. The same model also correctly predicts the phase transi-
tion sequence, rhombohedral-orthorhombic-tetragonal-cubic
(R-O-T -C), in BaTiO3 and K0.5Na0.5NbO3 [see Figs. 3(c)

and 3(h)]. Moreover, even for the highly complex six-element
tertiary solid solutions such as PIN-PMN-PT, DPA-1 not only
reproduces the T –C phase transition observed in experiments,
but also predicts the correct trend in the change of Tc due to
the compositional variation. As shown in Figs. 3(f) and 3(i),
the Tc rises by about 50 K from 0.29PIN–0.45PMN–0.26PT
to 0.36PIN–0.36PMN–0.28PT, similar to the Tc change of
≈60 K found in experiments due to the increased percentage
of PIN from 29% to 36% [42,43]. It is observed that theoret-
ical TC values for ferroelectric transitions are typically lower
than experimental values by 100 − 200 K. Such discrepancies
appear to be a common feature for force fields developed by
fitting to results computed with the PBEsol density functional
[23,44,45]. Given the high fidelity of DPA-1 as demonstrated
by its excellent fitting to DFT results, the underestimation
of TC is more likely a reflection of PBEsol’s limitations in
forecasting finite-temperature properties rather than an issue
with DPA-1′s precision.
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FIG. 3. Temperature-dependent lattice constants simulated with NPT DPMD using the universal interatomic potential for (a) PbTiO3,
(b) SrTiO3, (c) BaTiO3, (d) Pb0.5Sr0.5TiO3, (e) KNbO3, (f) 0.29PIN–0.45PMN–0.26PT, (g) PbZr0.5Ti0.5O3, (h) K0.5Na0.5NbO3, (i) 0.36PIN–
0.36PMN–0.28PT.

The universal interatomic potential developed here can
serve as a readily deployable tool to reveal the local struc-
tures and lattice dynamics of perovskite oxides with atomic
spatial resolution. Using three 50-ps equilibrium DPMD tra-
jectories for 0.29PIN–0.45PMN–0.26PT, each with different
B-site cation arrangements and modeled with a 40 000-atom
supercell, we analyze the distributions of local displacements
of cations with respect to the center of their surrounding
oxygen cages. For describing inversion-symmetry breaking in
ferroelectric materials, polarization is often the natural order
parameter. Given a configuration from MD simulations, the
polarization for simple perovskite systems such as PbTiO3 can
be estimated using the following formula

Pm(t ) = 1

Vuc

[
1

8
Z∗

Pb

8∑
i=1

rm
Pb,i(t ) + Z∗

Tir
m
Ti(t ) + 1

2
Z∗

O

6∑
i=1

rm
O,i(t )

]
,

where Pm(t ) is the polarization of unit cell m at time t , Vuc

is the volume of the unit cell, Z∗
Pb, Z∗

Ti, and Z∗
O are the Born

effective charges of Pb, Ti, and O atoms, rm
Pb,i(t ), rm

Ti,i(t ), and
rm

O,i(t ) are the instantaneous atomic positions. The polariza-
tion is thus the dipole moment per unit volume. However,
PIN-PMN-PT is considered a charge-frustrated system where
the B sites host cations of different charges: Mg2+, In3+, Ti4+,
and Nb5+. It becomes problematic to define a local electric
dipole for a unit cell that is not locally charge neutral, (e.g.,
a local PbInO3 unit cell in PIN-PMN-PT solid solutions).
Therefore, we use local atomic displacements of cations to
measure the degree of inversion-symmetry breaking at the unit
cell level.

In Figs. 4(a)–4(c), the probability density distributions of
cation displacements (dx, dy, dz) along the Cartesian axes are
shown as a function of temperature. At a low temperature of
200 K, the distributions of dx and dy are mostly Gaussian-like
and centered around zero for all cations. In contrast, the peak
position for dz of Pb deviates the most away from zero, fol-
lowed by Ti, Nb, In, and Mg in sequence. This deviation in the
dz distribution, compared to dx and dy, aligns with the global
tetragonal symmetry indicated by the lattice constants. Impor-
tantly, these distributions highlight a distinct difference in the
local structures between relaxor ferroelectric PIN–PMN–PT
and prototypical ferroelectrics like PbTiO3. In PIN–PMN–PT,
the distributions of cation displacements are more dispersive
and isotropic, spanning both positive and negative values
along all three Cartesian directions. Conversely, both Pb and
Ti cations in ferroelectric PbTiO3 displace along the same
polar direction (e.g., [001]) [44]. At an elevated temperature
of 300 K, the peak positions of the dz distributions for all
cations shift toward values lower than those at 200 K. When
temperature rises above TC , distributions become Gaussian, all
centering at zero.

Snapshots of instantaneous cation displacements in config-
urations sampled from MD are displayed in Figs. 4(d)–4(e).
We find that the magnitude of local Pb displacements ex-
hibits less temperature sensitivity compared to the B-site
cations. Even at 400 K which is above the theoretical TC ,
many Pb atoms remain locally displaced; their displacements
grow more chaotic, manifesting diminished long-range order.
The displacements of B-site cations, however, display more
vulnerability: some are already nonpolar at 200 K, and an
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FIG. 4. Probability density distributions of cation displacements along the (a) x axis, (b) y axis, (c) z axis as temperature increases in
0.29PIN–0.45PMN–0.26PT modeled with a 40 000-atom supercell. Snapshots of (d) A-site and (e) B-site cation displacements at different
temperatures obtained from MD simulations. Each white arrow indicates the local atomic displacement within a unit cell, with its background
color representing the direction. Note that if the magnitude of the local displacement is less than 0.1 Å, the background is colored white.

increasing percentage becomes nonpolar as temperature in-
creases. Notably, we do not observe any polar nanoregions
(PNRs) embedded in a nonpolar matrix, as the majority of
Pb atoms are displaced, in agreement with previous MD
simulations of PMN–PT [46]. The markedly different behav-
iors between Pb and B-site cations could be important for

understanding the piezoelectric response of lead-based relaxor
ferroelectrics. These findings underscore the quantitative na-
ture of the DPA-1 model.

We briefly comment on the main limitations and
challenges of machine-learning force fields like DPA-
1, which center around interpretability and computational
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efficiency. While the large number of learnable parameters of
DPA-1 facilitates the representation of complex interactions,
it simultaneously hinders our understanding of these very
interactions. In essence, each of these parameters adjusts itself
during the learning process to minimize prediction errors, but
the collective behavior of such a high number of parameters
can be enigmatic. This contrasts with traditional force fields
which, through their explicit functional forms, often allow for
clearer physical interpretation. Although the DPA-1 model
demonstrates a clear speed advantage over first-principles
methods like DFT, it still lags behind conventional force
fields. For instance, the bond-valence model [44] typically
runs two orders of magnitude faster than the DPA-1 model.
Solutions to the aforementioned challenges exist. Principal
component analysis can be performed to analyze parameters
of the DPA-1 model to explore the information within the
latent space. For example, in a recent work of DPA-1 [22], the
visualizations of the element-related parameters learned by
the model coincide with the periodic table, partially demon-
strating the model’s interpretability. As for computational
efficiency, model compression [47] is set to alleviate this
problem by using a small number of polynomial coefficients
to fit the learned parameters in the model. This approach can
significantly reduce the computational cost while maintaining
accuracy.

The current state of DPA-1 for perovskite oxides can be
viewed as a pre-trained model, which is already sufficiently
accurate for many perovskite oxides as discussed above.
Drawing parallels from the development history of ChatGPT
[48] in natural language processing, such a pre-trained model
can be fine-tuned for specific downstream tasks with minimal
extra effort using few-shot or zero-shot learning techniques
[49]. As the community continues to amass high-quality

electronic structure data, it is conceivable that this pre-trained
model will progressively expand its coverage, encompassing
an ever broader range of chemical and structural spaces.

In summary, using the ABO3-type perovskite oxide as a
model system, our results demonstrate that a deep neural
network, augmented with an attention scheme, can deliver
the requisite representability and transferability to establish
a universal interatomic potential for solid materials spanning
diverse element types and compositions, at least for materials
systems with a fixed crystal structure. Even with the com-
plex nature of target systems involving 15 elements, the final
training database remains impressively concise, containing
no more than 20 000 configurations; the associated compu-
tational cost is manageable, requiring fewer than 200 000
CPU hours. The DPA-1-based force field, UniPero, developed
in this work already exhibits satisfactory accuracy, proving
suitable for large-scale MD simulations of distinct ferroelec-
tric perovskites and reproducing the correct phase transition
sequences driven by temperature. By publicly releasing the
training database and the automated testing workflow, we
anticipate our initiative will facilitate a systematic improve-
ment and extension of a generalized force field with an
even larger scope (e.g., free surfaces and defects). This, in
turn, hopefully could foster the routine and efficient use of
molecular dynamics for simulating solid materials, ultimately
providing valuable insights for computer-aided materials
discovery.
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