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Intrinsic ferroelectric switching from first principles
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The existence of domain walls, which separate regions of different 
polarization, can influence the dielectric1, piezoelectric2, 
pyroelectric3 and electronic properties4,5 of ferroelectric materials. 
In particular, domain-wall motion is crucial for polarization 
switching, which is characterized by the hysteresis loop that is a 
signature feature of ferroelectric materials6. Experimentally, the 
observed dynamics of polarization switching and domain-wall 
motion are usually explained as the behaviour of an elastic interface 
pinned by a random potential that is generated by defects7,8, which 
appear to be strongly sample-dependent and affected by various 
elastic, microstructural and other extrinsic effects9–12. Theoretically, 
connecting the zero-kelvin, first-principles-based, microscopic 
quantities of a sample with finite-temperature, macroscopic 
properties such as the coercive field is critical for material design 
and device performance; and the lack of such a connection has 
prevented the use of techniques based on ab initio calculations 
for high-throughput computational materials discovery. Here 
we use molecular dynamics simulations13 of 90° domain walls 
(separating domains with orthogonal polarization directions) in 
the ferroelectric material PbTiO3 to provide microscopic insights 
that enable the construction of a simple, universal, nucleation- 
and-growth-based analytical model that quantifies the dynamics 
of many types of domain walls in various ferroelectrics. We then 
predict the temperature and frequency dependence of hysteresis 
loops and coercive fields at finite temperatures from first 
principles. We find that, even in the absence of defects, the intrinsic 
temperature and field dependence of the domain-wall velocity can 
be described with a nonlinear creep-like region and a depinning-like 
region. Our model enables quantitative estimation of coercive fields, 
which agree well with experimental results for ceramics and thin 
films. This agreement between model and experiment suggests that, 
despite the complexity of ferroelectric materials, typical ferroelectric 
switching is largely governed by a simple, universal mechanism of 
intrinsic domain-wall motion, providing an efficient framework for 
predicting and optimizing the properties of ferroelectric materials.

In ferroelectric materials, domain walls separate regions with differ-
ent polarization orientations. In response to an external perturbation 
that favours one polarization state over another, the domain wall will 
move to increase the size of the domain favoured by the perturbation, 
potentially leading to polarization switching of the whole material.  
The translational motion of the 180° domain wall has been studied 
experimentally9,10,12,14 and theoretically15–18. The dynamical behaviour 
of a domain wall is usually understood as an elastic interface moving 
in a fluctuating pinning potential that is created by defects7,8. Under 
relatively weak electric fields (E), the propagation of domain walls at 
finite temperature (T) can be described with a creep process9,10:
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where v is the domain-wall velocity, U is a characteristic energy barrier, 
kB is Boltzmann’s constant, EC0 is a critical field at which depinning 
occurs at 0 K and μ is the dynamical exponent determined by the nature 

of the defects. The dynamical exponent μ =  1 is usually ascribed to the 
random field defects, which break the symmetry of the ferroelectric 
double-well potential9,10, whereas μ =  0.5 is an indication of random 
bond disorder, which locally modifies the symmetric ferroelectric  
double-well potential depth11,12. Another widely used equation that 
characterizes the switching and domain-wall motion is Merz’s law, 
which takes the form v =  v0exp(− Ea/E), where v0 is the domain-wall 
velocity under an infinite field and Ea is the temperature-dependent 
activation field14,15. Merz’s law can be viewed as a reformulation of 
equation (1) with μ =  1 and Ea =  UEC0/(kBΤ). When the electric field 
becomes larger than the crossing field EC0, the wall experiences a  
pinning–depinning transition10, with the velocity becoming temperature- 
independent and given by:

∝( − ) ( )θv E E 2C0

where θ is a velocity exponent that reflects the dimensionality (D) of the 
wall. A classical theory based on a nucleation-and-growth mechanism 
was developed by Miller and Weinreich15 to explain the intrinsic ori-
gin of Merz’s law and creep behaviour. However, the Miller–Weinreich 
model assumes the dominant role of depolarization energy during 
nucleation, which incorrectly leads to an atomically sharp triangular 
critical nucleus and implausibly high activation fields for nucleation9,11. 
Multiscale simulations for 180° domain walls in defect-free PbTiO3 
revealed a square critical nucleus with diffusive and bevelled interfaces 
that substantially reduces the nucleation barrier and hence leads to 
much lower activation fields for domain-wall motion, suggesting an 
intrinsic origin for μ =  1 (ref. 17).

Unlike the motion of 180° domain walls, switching processes in 
ceramics, thin films and single-crystal ferroelectrics are not well under-
stood. The presence of a variety of extrinsic features, the possible role of 
ferroelastic effects in non-180° switching and the long (microsecond– 
millisecond) timescales typically studied for switching make it  
challenging to relate the observed hysteresis loops to the microscopic 
properties of ferroelectric materials. Because of the strong clamping 
effect of the substrate19,20, the intrinsic dynamics of non-180° domain 
walls cannot be studied in high-quality ferroelectric thin films; instead, 
most recent experimental and theoretical studies of non-180° domain 
walls have focused on static properties19. Here, we use a multiscale 
approach to computationally model the switching process. We first 
obtain the missing quantitative understanding of the intrinsic dynamics 
of non-180° domain walls and encapsulate it in a simple and general 
model for domain-wall speed. The model is then used in coarse-grained 
simulations on long timescales that enable accurate calculation of  
ferroelectric-switching hysteresis loops and coercive fields.

We quantitatively estimate the velocity of a 90° domain wall in defect-
free PbTiO3 over a wide range of temperatures and electric fields using 
large-scale molecular dynamics simulations (see Methods). Figure 1 
presents the velocity as a function of applied electric field for various 
temperatures, revealing an intrinsic ‘creep–depinning’ transition. In 
the low-field region (E <  0.5 MV cm−1), the velocity strongly depends 
on temperature and has a strong nonlinear dependence on the electric  
field. In the high-field region (E >  0.5 MV cm−1), the temperature 
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dependence of the domain-wall velocity becomes weaker, as seen by 
the overlap of the velocity data obtained at different temperatures. 
Plotting ln(v) versus 1/E (Fig. 1b), we find that ln(v) has a linear  
relationship with 1/E in the low-field region. This confirms that for 
relatively low electric fields and high temperatures the velocity of the 
90° domain wall follows Merz’s law (μ =  1.0), showing a creep-like 
response even in the absence of defects. The inset in Fig. 1b shows  
the temperature dependence of the activation field Ea =  UEC0/(kBT) 
above 140 K. The nearly linear relationship between Ea and 1/T shows 
that UEC0/kB is temperature-independent in the creep-like region 
with a value of 283 K MV cm−1. By fitting the velocity data at 40 K 
with equation (2), we find that θ =  0.72 and EC0 =  0.48 MV cm−1. The 
crossing field for the 90° domain wall is lower than that for the 180° 
domain wall (1 MV cm−1) in Pb(Zr, Ti)O3 (PZT) thin films10; this 
is expected, because ab initio calculations have shown that the 90° 
domain wall in PbTiO3 is lower in energy than the 180° domain wall 
in PZT16. The values of the dynamical exponent are the same (μ =  1) 
for 90° and 180° domain walls17. This indicates a universal intrinsic 
response for ferroelectric domain walls under low driving force. The 
observed intrinsic creep–depinning transition can be explained with 
a nucleation-and-growth mechanism. At low fields, the large size of 
the critical nucleus and the high nucleation barrier relative to ther-
mal fluctuations make nucleation the rate-limiting step and lead to an 
Arrhenius dependence of the velocity in the creep region. At high fields, 
the nucleus size and nucleation barrier approach zero and the domain-
wall velocity is growth dominated, resulting in near-linear dependence 
on electric fields and a weak temperature dependence.

We now develop an analytical model for nucleation at a non-180° 
domain wall based on our molecular dynamics simulations for 90° 
domain walls. As shown in Fig. 2a, a 90° domain wall in x–y coordinates 
can be viewed as a special 180° domain wall in X–Y coordinates: the 
polarization component parallel to the domain wall (PY) is reversed by 
180° across the boundary, while the polarization component perpen-
dicular to the domain wall (PX) remains almost unchanged (bottom 
of Fig. 2a). This transformation allows us to treat all types of non-180° 
domain walls as a 180° domain wall and allows a convenient estimate 
of the relative energies of different types of domain walls based on the 
Landau–Ginzburg–Devonshire (LGD) expression for the energy per 
unit area (σ) of the 180° domain wall (σ180DW). Detailed examinations 
of nucleation events at the domain wall (X =  0) at low temperature 
(Τ  =  20 K) reveal a diamond-like nucleus in the Y–Z plane (Fig. 2b), 
with substantial diffuseness at the boundary characterized by a gradual 
polarization change. With this microscopic picture of nucleation, we 
use LGD theory to relate the nucleation energy to the fundamental 
characteristics of the material (see Methods). The nucleation energy 

Unuc includes two important energy terms: polarization–electric-field 
coupling (PE) and interfacial energy. Contrary to the assumption of the 
classical Miller–Weinreich model, the depolarization energy is quite 
small and does not make a substantial contribution to the nucleation 
energy (see Methods for a detailed analysis of elastic and depolarization 
energy).

At the lowest approximation, PX and PZ remain unchanged across 
the domain wall and, therefore, the nucleation energy depends only 
on PY. The profile of PY for a domain wall containing a nucleus of size 
l1 ×  l2 ×  l3 can be described as:
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Ps is the bulk polarization and δi characterizes the diffuseness of the 
nucleus along direction i. Figure 2c shows the polarization profile in 
the Y–Z and X–Y planes generated by equation (3). Evaluating this PY 
profile in the LGD energy expression for different parameter values  
(l1 and l2) allow us to identify the critical nucleus size and to estimate 
the nucleation activation energy (Δ Unuc). According to Avrami theory 
of transformation kinetics, Δ Unuc can be related to the activation field 
in Merz’s law as ≈

+
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D
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, where D is the dimensionality17. By 

applying this relation with D =  2 and using parameters (see Methods) 
obtained from our classical bond-valence potential, we obtain Ea values 
for a range of temperatures. As shown in Fig. 2d, the activation fields 
predicted from the analytical model agree well with molecular dynamics  
results. To apply the model to other types of non-180° domain walls, 
only a simple modification of the input parameters is required, with the 
necessary values obtained from first-principles density functional theory 
(DFT) calculations of the particular domain wall (see Methods).

The availability of an analytical model that uses DFT inputs enables  
rapid estimation of hysteresis loops and coercive fields (Ec; see 
Methods). Because the structure and polarization of Ti-rich PZT 
are similar to those of PbTiO3, we compare the simulated values of 
the PbTiO3 Ec to various experimental values for PZT materials. We 
find that our theoretical coercive fields (Fig. 3a) using parameters of 
90°-domain-wall motion agree well over a large frequency range with 
the experimental Ec values (5–20 kV cm−1)21–24. The Ec values based 
on 180°-domain-wall motion are quite large and exhibit the correct 
frequency dependence (Fig. 3c), in agreement with experimental results 
obtained in thin films (with thickness larger than the critical size of the 
nucleus)25. This suggests that the 180° switching in ceramics proceeds 
via sequential 90°-domain-wall motion23, owing to the much smaller 
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Figure 1 | Domain-wall velocity 
from molecular dynamics 
simulations. a, Temperature 
(T)- and field (E)-dependent 
domain-wall velocity (vx) data 
reveal an intrinsic creep–depinning 
transition. The domain-wall 
velocity data at 40 K are in the flow 
region (shaded area) and are fitted 
to equation (2). We find θ =  0.72, 
EC0 =  0.482 MV cm−1 (dashed 
purple line, boundary of the shaded 
area). The solid lines are guides for 
the eye. The error bars are standard 
deviations of vx. b, Plot of ln(vx) 
versus 1/E curves for different 
temperatures (see legend in a). 
The inset shows the temperature 
dependence of the activation field 
Ea =  UEC0/(kBT) in the creep-like 
region at low fields.

© 2016 Macmillan Publishers Limited. All rights reserved



3 6 2  |  N A T U R E  |  V O L  5 3 4  |  1 6  J U N E  2 0 1 6

LetterreSeArCH

Figure 2 | LGD model of nucleation at domain walls. a, Schematic of 
mapping a 90° domain wall in x–y coordinates to a 180° domain wall in 
X–Y coordinates. The bottom panel shows the polarization P profile of a 
90° domain wall in X–Y coordinates. The change in PX across the domain 
wall (X =  0) is small. b, Simulated nucleation process at the domain wall 
in the Y–Z plane (blue-shaded plane in the schematic). The black arrows 
scale with the local dipole magnitudes of each unit cell in the Y–Z plane. 
The background of each arrow is coloured on the basis of the magnitude 
of the Y component of the local dipole. At t =  0 ps, the Y–Z interface at 

X =  0 has dipoles aligned along − Y. In the presence of electric field, a 
diamond-like nucleus forms at t =  6.5 ps. c, Polarization profile of a nucleus 
generated by equation (3). The size of the nucleus is defined as l1 ×  l2 ×  l3; 
δ1,2,3 characterize the diffusiveness of the polarization. d, Comparison of the 
activation fields Ea obtained from molecular dynamics (MD) simulations 
with the results of the LGD model. The analytical model reproduces 
molecular dynamics activation fields using bond-valence-potential-based 
parameters together with the molecular dynamics temperature dependence 
of local polarization.
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Figure 3 | Hysteresis loops and coercive fields for several materials 
simulated using first-principles data. a, Simulated frequency 
dependence of coercive fields Ec for PZT ceramics for various domain 
sizes (see legend) at 300 K. Theoretical values are comparable to various 
experimental values22–24 in ceramics. PZT-4, -5A and -5H refer to 
different PZT ceramics in ref. 21. b, Hysteresis loops of BaTiO3 with a 
domain size of 1 μm (dashed lines) and 10 μm (coarse grain). The green 
labels refer to experimental values of coercive fields. c, Frequency- and 

temperature-dependent coercive fields for PZT thin films. Experimental 
data (solid lines with filled circles and squares) are taken from ref. 25.  
A domain size of 0.1 μ m (vertically dashed lines) and 1 μ m (dashed lines) 
is used to obtain the theoretical values. d, Theoretical coercive fields for 
different domain walls in BiFeO3 with a domain size of 0.5 μ m (solid 
lines), 0.05 μ m (vertically dashed lines) and 5 μ m (dashed lines), compared 
to experimental values27–29.
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intrinsic nucleation barrier at the 90° domain wall. Thus, the switching 
and coercive fields in PZT are largely determined by the intrinsic prop-
erties of the appropriate domain-wall-motion mechanism. Similarly to 
the PZT results, we find that switching in BaTiO3 ceramics is governed 
by the motion of 90° domain walls (Fig. 3b), with the predicted coercive 
field of around 0.1 kV cm−1 at 300 K close to the experimental value for 
coarse-grain BaTiO3 ceramics26.

Polarization reversal in BiFeO3 is another test of our model, owing to 
the importance of octahedral rotations and the presence of three types 
of domain walls in rhombohedrally polarized BiFeO3. DFT calculations 
revealed that the 71° domain wall has the highest energy, followed by 
the 180° domain wall, with the lowest energy for the 109° domain wall. 
The higher energy of the 71° domain wall is attributed to the mismatch 
of oxygen octahedral rotations across the domain boundary. We intro-
duce a second order parameter (oxygen octahedral rotation, Θ) into our 
LGD-based nucleation-and-growth model (see Methods). Using DFT 
domain-wall energies, our analytical model predicts that Ec is lowest 
for the 71° domain wall, followed by the 109° and 180° domain walls. 
The predicted coercive fields for 180° domain walls are comparable 
with experimental values in thin films27–29. The ability of our simple 
analytical model to estimate Ec accurately indicates that the value of the 
coercive field is largely determined by the intrinsic properties of the 
material, with the nucleation barrier on the domain wall controlling 
the dynamics of polarization reversal.

The dominant role of intrinsic domain-wall motion explains the 
consistent differences in Ec of the tetragonal and rhombohedral  
ferroelectrics. For example, an increase in Ec of approximately 80% is 
observed across the rhombohedral− tetragonal compositional phase 
transition at the morphotropic phase boundaries in lead-free (Ba, Ca)
TiO3-Ba(Zr, Ti)O3 and Bi-rich BiScO3-Bi(Zr, Ti)O3-PbTiO3 ceramic 
systems30. Analysis of our LGD nucleation model incorporating the 
changes in octahedral rotations across the 71° domain wall shows that 
the ratio of the coercive fields for 90° and 71° domain walls is approxi-
mately two (see Methods). This suggests that the switching in rhombo-
hedral and tetragonal ferroelectrics proceeds via a multistep switching 
mechanism that involves a series of 71° and 90° steps, respectively, and 
that the higher Ec of the tetragonal ferroelectrics is a direct consequence 
of the larger nucleation energy for 90°-domain-wall motion. The uni-
fied framework presented here relates microscopic zero-kelvin quanti-
ties to macroscopic material parameters at finite temperature and thus 
suggests an avenue for rational material design.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOds
Molecular dynamics simulations of 90° domain walls. To understand the intrinsic  
dynamics of non-180° domain walls, we study the motion of the 90° domain wall 
in defect-free PbTiO3 as an example and then generalize the obtained results to 
other types of non-180° domain walls. We perform constant-temperature  
constant-pressure (NPT; N is the (constant) number of particles) molecular 
dynamics simulations over a wide range of temperatures and electric fields using 
a bond-valence-based classical potential and extract velocity data for the 90° 
domain wall13,18,31,32. We use a 40 ×  40 ×  40 supercell with the polarization direc-
tion changing from [010] to [100] across the boundary (Extended Data Fig. 1a). 
Owing to the use of an orthorhombic supercell, the domains are homogeneously 
strained, making the relative angle between the orientations of the polarization 
axes of neighbouring domains exactly 90°, rather than 2arctan(a/c) as is geomet-
rically required for a tetragonal ferroelectric with short-axis lattice constant a and 
long-axis lattice constant c. The electric field is applied along the [100] direction; 
this will cause the domain wall to move along the [110] direction (with velocity 
vDW) as a result of the 90° switching of [100] dipoles to [010] dipoles at the domain 
boundary (Extended Data Fig. 1b). When dipoles in one layer of unit cells are 
switched by 90°, the wall moves by + /a c 22 2 , and the cells initially with their 
long axis (c) along [100] will now have their short axis (a) along [100], causing 
L[100] (the cell dimension along [100]) to be reduced by (c −  a) (Extended Data  
Fig. 2a). Therefore, the domain-wall velocity vDW can be estimated from the change 
in the cell dimension dL[100] using:

=
+

( − )
=

+
( − )

v
L

t
a c
c a

v a c
c a

d
2d 2 2xDW

[100] 2 2 2 2

with ν x =  dL[100]/2dt (the factor of 1/2 is due to the presence of two walls in the  
simulated supercell). Owing to the stochastic behaviour of nucleation, 20 simulations  
with slightly different initial structures are carried out for a given temperature and 
electric field to obtain the velocity average and standard deviation.

It is known that for PbTiO3 the values of the lattice constants depend on  
temperature. The lattice constants of PbTiO3 are calculated under different tem-
peratures with molecular dynamics simulations; we find that + / ( − )a c c a[2 ]2 2  
depends on the temperature weakly and is in the 5–6 range (Extended Data  
Fig. 2b). This temperature dependence has a different origin from the temperature 
dependence of the domain-wall velocity. For the polarization switching process, 
the relevant kinetic quantity is vDW/a, which is the effective (switching-related) 
domain-wall velocity (veff) in terms of the unit-cell lattice constant a. Therefore, 
to connect the domain-wall velocity at a given temperature with the experimentally 
observed switching rate estimated from the switching current, the obtained velocity  
vDW must be divided by the lattice constant at that particular temperature. We 
find that veff exhibits the temperature dependence predicted by equation (1). 
Owing to the temperature dependence of the lattice constants, the domain-wall 
velocity measured by vDW deviates somewhat from equation (1). We consider 
veff as the intrinsic velocity of the domain wall. Nevertheless, when studying 
the effect of the electric field on switching at a given temperature, vx can also 
be used because it differs from the intrinsic, switching-related domain-wall 
velocity veff by a constant multiplicative factor for each temperature. The tem-
perature and field dependence of vx are presented in Fig. 1 because vx is the 
quantity that is most easily and directly obtained from our molecular dynamics 
simulations. A vx of 10–50 m s−1 corresponds to a domain-wall velocity of 
50–250 m s−1 or a change in supercell dimension of 1–5 Å per 10 ps—about 4–20 
unit cells per 10 ps. All simulations are carried out for 10–50 ps and therefore 
allow domain-wall movement that can be detected by examination of the changes 
in the supercell dimensions and total polarization. Our approach for extracting 
the domain-wall velocity from the change in supercell dimension resembles  
the experimental switching-current measurement. Experimentally, the domain-
wall velocity is extracted by measuring the switching current, which is equivalent 
to dP/dt. We find from molecular dynamics simulations that vx scales linearly 
with dPx/dt for various temperatures (Extended Data Fig. 2c), showing  
that vx is a good indicator of domain-wall velocity for theory–experiment  
comparison.

The thermal broadening of domain walls is taken into account in finite- 
temperature molecular dynamics simulations. Increased thermal broadening of 
the wall diminishes the polarization at the interface of the two domains, leading 
to a lower nucleation energy, faster domain-wall motion and a lower coercive 
field. As the temperature approaches the critical temperature, the coercive field is 
expected to become low, and the domain-wall motion will take place in the flow 
regime even at low fields. Additionally, the smearing out of the domain wall may 
lead to a transition from layer-by-layer switching to multilayer switching whereby 
several unit cells in adjacent layers switch simultaneously.

LGD nucleation model. The nucleation energy Unuc that captures the most 
important energy terms can be expressed as Unuc =  Δ UE +  Δ Ui where the polari-
zation-field coupling term Δ UE is:

∫ ∫ ∫∆ =− ( )− ( ) ( )
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and the interfactial energy Δ Ui is:
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Here Pnuc(X, Y, Z) and PDW(X, Y, Z) are the polarization profiles of a domain wall 
with and without the nucleus, respectively. Uloc is the local energy penalty due to 
the deviation of the local polarization from the ground-state bulk value (Ps): 
Uloc(P) =  Aloc[1 −  (P/Ps)2]2, where Aloc is the energy difference between the ferro-
electric phase and the paraelectric phase. Ug is the gradient energy due to the 
polarization changes (∂ jPi) at the domain wall: ( ) =∑ (∂ )U P g Pi j ij j ig

2, where gij is 
the coefficient for the gradient of the ith component of P along direction j. The 
value of gij can be derived from the energy and diffusiveness of the domain wall. 
The contributions from elastic strain energy (ε2) and strain–polarization coupling 
(εP2) terms could be implemented into equation (3). However, we find that the 
elastic energy change is not significant (see below) and is therefore omitted in the 
following analysis.
Elastic energy contribution to nucleation energy. We calculate the effective lattice 
constants (defined in Extended Data Fig. 1a) in X–Y coordinates and find that 
they remain almost unchanged across the domain wall (Extended Data Fig. 3a).  
This finding suggests that the elastic energy cost at domain boundaries is not 
significant in an ideal crystal. Extended Data Fig. 3b, c shows the distributions of 
strain gradient in the presence of a diamond-like nucleus (illustrated in Fig. 2b).  
It can be seen that the unit cells of the nucleus have essentially the same lattice 
constants as the rest of the PbTiO3 unit cells at the domain wall. Therefore, the 
elastic energy contribution to the nucleation energy (change in elastic energy dur-
ing nucleation) is negligible and does not have to be treated explicitly. We have 
therefore omitted explicit strain and strain–polarization coupling terms from our 
LGD nucleation model at the lowest approximation. Additionally, although the 
LGD theory presented in the main text does not explicitly refer to elastic inter-
actions, these are included implicitly. It can be shown that inclusion of strain and 
strain–polarization coupling terms merely renormalizes the fourth-order LGD 
parameter. Because the parameters for the LGD model are obtained from DFT cal-
culations in which strain polarization coupling is included, these elastic energetics 
are included in the Aloc parameter that specifies the dependence of local energy 
on local polarization. (Similarly, because the supercell size is allowed to vary in 
the NPT simulations, elastic energy is taken into account in molecular dynamics 
simulations as well.) Therefore, a deviation from the preferred value of polarization 
automatically implies a change in the unit-cell parameters, and the energy of this 
change is included in our model as the local energy penalty (Uloc).
Analysis of the Miller–Weinreich nucleation model. The original work of Miller 
and Weinreich15 (illustrated in Extended Data Fig. 4) is based on the following 
assumptions: (1) the nucleus boundary is oriented at a 90° angle relative to the 
original domain wall; (2) the nucleus is located at the surface of the material and 
has a net non-zero boundary charge (ρ1 +  ρ2 >  0); (3) the boundary of the nucleus 
has the same interface energy as that of the planar domain wall (σw) on which the 
nucleus is located; and (4) the σp parameter that characterizes the strength of the 
depolarization interactions is large relative to the magnitude of the local interface 
energy characterized by σw. The assumption that σ σ�p w leads to the triangular 
(red in Extended Data Fig. 4) nucleus shape.

Owing to the lack of reliable experimental or first-principles data for the domain-
wall energy, the model was assumed to be correct in ref. 15 and so was used to 
parameterize the domain-wall energy with the available domain-wall velocity data. 
This allowed the fitting of the electric-field/domain-wall-velocity relationships in 
many experiments. Despite this success, two major studies have cast serious doubt 
on the model. First, first-principles calculations of domain-wall energy per unit area 
(σw) were found to be markedly higher than the fit values and, conversely, inserting 
the accurate, calculated values into the Miller–Weinreich model gave velocities  
that were markedly lower than those observed experimentally9. Second, multiscale 
modelling of the nucleation process on the domain wall for 180° domain walls shows 
that the critical nucleus is not a tall, narrow, sharp triangle, as suggested in ref. 15. 
Instead, the observed nucleus is a diffuse, bevelled square17. We show that rather 
than the σ σ�p w  limit assumed in ref. 15, the actual nucleation takes place in  
the σ σ�w p limit, with the local interface energy playing the dominant role and 
governing the energetics of nucleation and growth.

© 2016 Macmillan Publishers Limited. All rights reserved
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Reduced depolarization energy. For simplicity, we discuss the relative energies 
of the depolarization and local interface terms adopting the triangular shape and 
form of the nucleus energy expression of ref. 15 (presented in Extended Data  
Fig. 4), so that these terms are discussed in the framework traditionally used to 
model nucleation on the domain wall. Four factors contribute to the reduced role 
of depolarization energy in nucleation.

First, the bevelled shape of the nucleus effectively reduces σw. Because the depo-
larization energy of the Miller–Weinreich model arises from the electrostatic inter-
actions between the charges along the boundary of the nucleus, the magnitude of 
σp exhibits a logarithmic dependence on the width of the nucleus (a). Although 
the boundary of the nucleus was assumed to be sharp in ref. 15 and at a 90° angle 
to the domain wall, the actual nucleus boundary has a bevelled shape, as shown in 
previous molecular dynamics studies17. This decreases the effective domain-wall 
area or, alternatively, the effective local-domain-wall energy (σeff,w) for a given 
nucleus of width a. According to equation (9) in ref. 15 (also presented in Extended 
Data Fig. 4), the magnitude of the width of the critical nucleus a* is determined by 
the ratio between σw and the PE terms in the limit σ σ�p w  and in the limit 
σ σ�w p. Thus, for all cases, a decrease in σw leads to a smaller critical width a* and 
therefore a smaller critical depolarization energy ⁎σp. The logarithmic dependence 
of σp is not weak for the small nuclei observed in our molecular dynamics  
simulations. Therefore, a decrease in the local interface energy due to the bevelled 
shape of the nucleus, which favours smaller critical nucleus size, also substantially 
decreases the magnitude of ⁎σp.

Second, the dielectric constant is enhanced at the domain wall and therefore the 
screening at the domain wall is stronger than in the bulk of the material. Recent 
experimental1 and theoretical work33 has shown that the dielectric constant at the 
domain wall is larger than that in the bulk. This is confirmed by our molecular 
dynamics simulations that show that the local dipole fluctuations and therefore the 
dielectric constant at the 90° domain wall are enhanced by a factor of two relative to 
the bulk value. Owing to the presence of the dielectric constant in the denominator 
of the formula for σp, the actual σp value is then reduced by another factor of two 
relative to the original Miller–Weinreich estimate.

Third, the diamond shape of the nucleus shows an interaction cancellation 
effect. An additional effect is present for the elongated-diamond-like nuclei found 
in this work. Unlike the Miller–Weinreich model, which is not charge neutral, the 
elongated diamond shape observed in our molecular dynamics simulations exhib-
its both positive (ρ1 and ρ2) and negative (−ρ3 and −ρ4) boundary charges 
(Extended Data Fig. 5) so that the total charge at the nucleus boundary (Qtot) is 
zero. Therefore, the repulsive energy penalty due to the interaction between ρ1 and 
ρ2, and between −ρ3 and −ρ4, is cancelled by the attractive energy gain of the 
interaction between ρ1 and −ρ3, and between ρ2 and −ρ4. This changes the 
dependence of σp on a from ln[2a/(eb)] to ln[(a/eb)] (the / ( )εP b4 [ ln 2 ]s

2  contribu-
tion (in which ε is the dielectric constant) to σp (see Extended Data Fig. 4 for 
definitions of e and b) arises from the interaction between the charges on the two 
opposite sides of the triangle; see the text following equation (4) in ref. 15). 
Although this change would have a minor effect on the large nucleus assumed in 
ref. 15, it is highly important for the small nucleus observed in our molecular 
dynamics simulations.

Finally, the boundary of the nucleus has a much smaller depolarization charge. 
We find that the average boundary charge between the nucleus and the original  
domain as integrated from the polarization changes on the 90° domain wall 
observed in our molecular dynamics calculations (Extended Data Fig. 5) is about 
two times smaller (Δ P =  0.7 C m−2) than that predicted by the sharp polarization 
change (Δ P =  2Ps =  1.41 C m−2) that would be used in a Miller–Weinreich-like 
model. Such a small polarization change is due to the greatly decreased value of  
PY at the domain wall relative to the bulk value. First-principles calculations16 show 
that the diffuseness of the 90° domain wall means that PY at the domain wall layer 
is only about 50% of the bulk value. This large decrease in PY is also found in our 
calculations (Fig. 2a). It is this domain wall layer that undergoes the nucleation and 
growth process governing the domain-wall motion, and therefore the appropriate 
value of P to be used for estimating the depolarization charge is much smaller than 
the Miller–Weinreich estimate based on the bulk value Ps. The much smaller charge 
generated at the boundary of the nucleus decreases the strength of electrostatic 
interactions and σp by a further factor of approximately four.

Despite the small σp, our nucleus still exhibits an elongated shape; this is due 
to the greater magnitude of the local energy σw for the domain wall at which P 
changes along the P direction than that for the domain wall at which P changes 
along a direction transverse to the P direction, as found in ref. 17 for 180°-domain-
wall motion. This is also unlike the assumption in ref. 15 that σw is the same as the 
energy of the flat domain wall for all nucleus boundaries.

In summary, rather than the σ σ�p w limit assumed in ref. 15, the actual nucle-
ation takes place in the σ σ�w p limit, with the local interface energy playing the 
dominant role and governing the energetics of nucleation and growth. This not 

only justifies our analytical model that neglects the small depolarization energy 
term, but also represents a new understanding of the physics that is important for 
ferroelectric switching.
Quantitative analysis of σp reduction. We quantitatively evaluate the impact of 
the effects described above (bevelled shape, high dielectric constant, cancellation 
effect and small depolarization charge) on the depolarization energy term (σp). 
To take the modification of the boundary structure into account, we write down a 
modified version of the Miller–Weinreich formula:
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where σw is the energy of the planar 90° domain wall, s =  0.41 is a factor that 
accounts for the reduction in the interface area of the nucleus due to its bevelled 
shape, as described previously17 (σeff,w =  sσw), fc is the scaling factor between the 
actual charge at the nucleus and the boundary charge assumed in the Miller–
Weinreich model, fε is the scaling factor between the values of the dielectric  
constant (ε) at the domain wall and in the bulk, and fQ is a factor reflecting the 
effect of the interactions between the charged domain boundaries at the net-neutral 
(Qtot =  0) and net-charged (Qtot ≠  0) boundaries of the nucleus, with fQ =  2 for the 
original, charged, triangular, Miller–Weinreich nucleus and fQ =  1 for a net-neutral, 
diamond-like nucleus.

To determine the dimensions and the energy of the critical nucleus, we evaluate 
Unuc for a wide range of a and l values and identify those that give the lowest energy 
for each nucleus area A =  al. Here, we use the DFT σw value of 35 mJ m−2 for the 
90° domain wall and standard parameters for PbTiO3 (dielectric constant ε =  60, 
bulk polarization component in the plane of the 90° domain wall Ps =  0.53 C m−2, 
b =  3.9 Å, c =  4 Å and e =  2.718). The plots of the nucleus energy versus area (A) 
for different values of s, fc, fε and fQ under an applied field of 0.1 MV cm−1, which 
is typical of the low range of field magnitudes used in molecular dynamics simu-
lations, are shown in Extended Data Fig. 6. We also show the dependence of the 
nucleus aspect ratio (l*/a*, where l* is the length of critical nucleus; see Extended 
Data Fig. 5) on the ratio of σp and σw, and the σp values obtained for different 
values of s, fc, fε and fQ.

Examination of Extended Data Fig. 6 shows several important differences 
between the results of the classical Miller–Weinreich approach and the results 
obtained for a Miller–Weinreich-like nucleus with realistic boundaries. First, 
even for s =  fc =  fε =  1, the obtained a* =  12.5b and l* =  47b values are relatively 
small. For such a small a*, the dependence of σp on ln[(a/(eb)] is not weak 
and, therefore, reduction of a* due to the effects described above (smaller  
effective domain-wall area due to bevelled shape) has a strong effect on σp. Taken 
together, the various effects lead to a reduction in σp by a factor of about 30 
relative to the Miller–Weinreich estimate for nucleation at the 90° domain wall 
under an applied field of 0.1 MV cm−1. This results in σp ≈  5.7 mJ cm−2, much 
smaller than the local interface energy characterized by the effective domain-
wall energy σeff,w =  15.4 mJ cm−2. The small value of σp justifies our neglect of 
electrostatic interactions in the analytical model of the nucleus, and the much 
smaller σp/σw ratio corresponds to an aspect ratio of the critical nucleus (l*/a*) 
that is close to one.

As illustrated in Extended Data Fig. 7, similar effects can be obtained for nuclea-
tion on the 180° domain wall under an applied field of 0.3 MV cm−1 using the DFT 
180°-domain-wall σw value of 132 mJ m−2 and standard parameters for PbTiO3 
(dielectric constant ε =  60, bulk polarization Ps =  0.75 C m−2, b =  3.9 Å, c =  4 Å 
and e =  2.718).
Model parameters for non-180° domain walls. The nucleation model discussed 
here is similar to the model in ref. 17. The mapping scheme discussed therein 
allows the treatment of a non-180° domain wall as a generalized 180° domain 
wall lying in the Y–Z plane with polarization changing from + PY to − PY along X.  
The following five parameters are required to estimate the nucleation energy 
at the domain wall under a given temperature T: Ps(T), Aloc(T), gYY, gYX and 
gYZ, where:
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Here Ps is the total local polarization, γ is the fraction of the polarization variation 
across the domain boundary (for example, γ= /2 2 for a 90° domain wall), Aloc 
is the energy difference between the ferroelectric phase and the high-symmetry 
paraelectric phase, σYX

DW is the energy of a domain wall with normal along X and 
neighbouring dipoles along Y, and δX is the polarization diffuseness parameter 
over which the polarization changes across the domain boundary. By analogy, σYY

DW 
is the energy of a domain wall with normal along Y and neighbouring dipoles  
along Y (head-to-head or tail-to-tail domain wall), and δY is the associated diffuse-
ness parameter. Ps(0) and Aloc(0) are extracted from zero-kelvin DFT calculations. 
The temperature dependence of Ps(T) is taken from experiments when available. 
The values of gYY and gYZ can be determined on the basis of the domain-wall energy 
(σDW, calculated from DFT) or diffuseness parameters (δ, calculated from mole-
cular dynamics). In practice, gYY, gYX and gYZ are of the same order and therefore 
gYX ≈  gYY is a useful approximation.

For BaTiO3, DFT calculations using the PBEsol density functional34 with 
a =  3.986 Å and c/a =  1.01 give Aloc(0) =  3.48 ×  107 J m−3, σ180DW =  11 mJ m−2, 
σ90DW =  3.89 mJ m−2, Ps(0) =  0.283 C m−2 and gYX =  0.61 ×  10−11 m3 F−1. These 
parameters are used for simulating the hysteresis loop in Fig. 3b. For PbTiO3, 
we use experimental lattice constants (a =  3.9 Å and c =  4.15 Å) for DFT calcu-
lations with PBEsol and obtain Aloc(0) =  5.05 ×  108 J m−3, σ180DW =  175 mJ m−2, 
σ90DW =  67 mJ m−2, gYX =  1.21 ×  10−11 m3 F−1. The temperature dependence of 
polarization is taken from ref. 35, with Ps(0) =  0.872 C m−2. These parameters are 
used for predicting the coercive fields of PbTiO3-based ceramics and thin films 
in Fig. 3a, c.
LGD model for BiFeO3 and other rhombohedral ferroelectrics with O6  
rotations. 71°, 109° and 180° domain walls are all observed in BiFeO3. The ener-
getics of these three types of domain walls have been investigated with DFT in 
several studies36–38. In ref. 36, σ71DW =  152 mJ m−2, σ109DW =  62 mJ m−2 and 
σ180DW =  73 mJ m−2 was reported using LDA+ U. In ref. 38, σ71DW =  128 mJ m−2, 
σ109DW =  33 mJ m−2 and σ180DW =  98 mJ m−2 was reported with GGA+ U. From 
equation (5), we deduce that σ ∝ P A gYX

Y
Y

YXDW loc . Assuming the polarization gra-
dient coefficient is isotropic, the energy of a non-180° domain wall (σγDW) can be 
related to that of a 180° domain wall: σ γ σ=γ

DW
3

180DW . Therefore, for a given 
ferroelectric, σ71DW:σ90DW:σ109DW:σ180DW =  0.192:0.354:0.544:1. This relationship 
works well for 90° and 180° domain walls in BaTiO3 and PbTiO3 (ref. 16), and 
reasonably well for 109° and 180° domain walls in BiFeO3 (refs 36, 38). However, 
the 71° domain wall is found to have the highest energy in BiFeO3, which is  
attributed to the mismatch of oxygen octahedral rotation across the domain 
boundary36,38. To capture this feature, we introduce a second order parameter, 
oxygen octahedra rotation (Θ), into the LGD model of BiFeO3. Therefore, the 71° 
domain wall in BiFeO3 has the following extra energy term:
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where K is the harmonic angle constant and Θbulk(X, Y, Z) ≈  8° (ref. 38). The value 
of K (6.106 ×  109 J m−3 rad−2) is optimized such that the LGD model reproduces 
the DFT value of σ71DW with the gradient coefficient (gYX =  0.32 ×  10−11 m3 F−1) 
estimated from σ109DW. The following term is then added to equation (3) when 
estimating the nucleation energy:
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where an analytical equation similar to equation (4) is used to describe the angle 
profile Θnuc(X, Y, Z). Other parameters are Aloc(0) =  5.81 ×  108 J m−3, Ps(0) =  
0.987 C m−2 and T0 =  1,120 K.
Coarse-grained simulation of P–E hysteresis loop. The coercive field reflects the 
ease of domain reversal and is one of the most important characteristic param-
eters of ferroelectrics for practical applications. For the domain-reversal process 
achieved via domain-wall motion, the change in the polarization under an applied 
electric field directly correlates with the distance moved by the domain wall, the 
velocity of which can be estimated using Merz’s law. We extract the pre-exponential  

factor v0 in Merz’s law from molecular dynamics simulations in the creep-like 
region and obtain Ea for PbTiO3 from the LGD model with parameters calculated 
with DFT PBEsol39. With these values of v0 and Ea, we then simulate the hysteresis 
loops at 300 K and obtain the frequency dependence of Ec for varying domain sizes 
(Fig. 3a). Following the experimental set-up used in most hysteresis-loop meas-
urements, a triangular electric field E(t), with frequency f, maximum magnitude 
E0 and time t, is used in the simulation:
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At t =  0, the domain of size d is fully poled with saturation polarization − Ps. 
Assuming the domain reversal is achieved via domain-wall motion, the polariza-
tion at time t can be calculated using:

∫
( ) =− +

( ) ( )
/

P t P
v t t
d

P
d 6

f

s
0
1

s

where v(t) is the domain-wall velocity at time t and is calculated using Merz’s 
law: v(t) =  v0exp[− Ea/E(t)]. When the value of P(t) obtained from equation (6) 
is larger than Ps (such that the domain is already fully reversed), P(t) is set to Ps. 
Plotting P(t) with respect to E(t) gives the hysteresis loop. The coercive field Ec 
is the magnitude of the electric field when P(t) =  0. On the basis of the mole-
cular dynamics simulation results, we used v0 =  300 m s−1 for predicting room- 
temperature coercive fields. We find that the coercive field is not sensitive to the 
value of v0, as demonstrated by the moderate change in coercive fields in response 
to orders of magnitude change in d (which is equivalent to changing v0 for fixed 
d) shown in Fig. 3. This indicates that the magnitude of the coercive field is largely 
determined by the activation field.
Comparison of coercive fields for tetragonal and rhombohedral ferroelectrics. 
The values of Ps, Aloc(0), σ90DW, gYX and gYX are derived from PbTiO3. These para-
meters are used for simulating the hysteresis loop and coercive field of tetragonal 
(T) ferroelectrics. The value of σ71DW is estimated as 0.542σ90DW (as explained 
above). To account for the possible octahedral rotations across the 71° domain wall, 
we use the angle constant derived from BiFeO3 when simulating the coercive field 
for rhombohedral (R) ferroelectrics; we find that / ≈E Ec

T
c
R  1.8.

Effect of supercell size. We carried out a benchmark study on the effect of super-
cell size (Extended Data Fig. 8). We calculated the domain-wall velocity with 
40 ×  40 ×  40, 50 ×  50 ×  40, 60 ×  60 ×  40 and 65 ×  65 ×  40 supercells at 200 K and 
240 K. The key finding is that the values obtained with the 40 ×  40 ×  40 supercell 
do not substantially deviate from values found using the larger supercells (within 
10 m s−1). Most importantly, the vx–E slope is similar for supercells of different 
sizes, showing that the domain-wall dynamics obtained with a 40 ×  40 ×  40 super-
cell are robust against supercell size.
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Extended Data Figure 1 | Large-scale molecular dynamics simulations 
of 90°-domain-wall motions. a, Schematic of a 40 ×  40 ×  40 supercell with 
90° domain walls used in molecular dynamics simulations. The colours  
of the domains correspond to the polarization (P) wheel shown at the 
bottom. White arrows represent the polarization directions of domains.  
b, Simulated domain evolution under a [100]-oriented electric field (E). 
The dashed yellow lines show the positions of 90° domain walls. The 
electric field is turned on at time t0. The domain-wall velocity vDW along 
[110] (yellow arrows) is estimated on the basis of the change in the 
supercell dimension (Lx) along [100] from t0 to t0 +  Δ t. The black arrows 
scale with the local dipole of each unit cell. The domain wall motion is 
achieved via the 90° switching of [100] dipoles to [010] dipoles.
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Extended Data Figure 2 | Lattice constants of supercells used in 
molecular dynamics simulations. a, Pb (orange) and Ti (blue) sublattices 
in a PbTiO3 supercell with 90° domain walls. The boundaries are marked 
by green lines. aX and aY are effective lattice constants of the domain-wall 
unit cell defined in the transformed X–Y coordinates and shown by the  
red rectangle. When dipoles in one layer of unit cells switch by 90° (c →  a), 

the wall moves by (a2 +  c2)1/2/2 along the [110] direction. b, Temperature (T)  
dependence of + / ( − )a c c a[2 ]2 2  obtained from molecular dynamics 
simulations (squares). It depends on temperature weakly (blue line). c, Plot 
of polarization change (dPx/dt) versus cell-dimension change (vx). The 
solid curves show linear fits at 100 K (blue) and 240 K (red).
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Extended Data Figure 3 | Elastic energy contribution to nucleation 
energy. a, Effective lattice constants across 90° domain walls. The inset is 
the top view of the 40 ×  40 ×  40 supercell used in molecular dynamics 
simulations; black arrows indicate the polarization direction. The 
effective lattice constants (aX and aY) are defined in X–Y coordinates, as 
explained in Extended Data Fig. 1. The averaged lattice constants for 

each layer of cells across the domain wall along the [110] direction are 
plotted. b, c, Distributions of strain gradient at the domain wall in the 
presence of a nucleus. aY

0  and aZ
0  are the effective lattice constants along 

Y and Z in the absence of nucleus (t =  0 ps in molecular dynamics 
simulations), respectively.
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Extended Data Figure 4 | Schematic of a triangular-shaped nucleus, 
as in the Miller–Weinreich model. The triangular-shaped nucleus 
(red) has a polarization direction (white arrows) that is antiparallel to 
its neighbouring domains (blue). The depolarization charges ρ1,2 at two 
boundaries are of the same sign, giving rise to repulsive energy penalty. 
The expressions for nucleation energy (Unuc), depolarization energy (Ud), 

depolarization-contributed domain-wall energy (σp) and the dimensions 
for the critical nucleus a* and l* are taken from the original work of Miller 
and Weinreich, ref. 15; c and b are lattice constants (c ≈  b in PbTiO3 and 
BaTiO3), e is the base of natural logarithm, and ε is the dielectric constant. 
The σp/σw ratio determines the aspect ratio of the critical nucleus (l*/a*).
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Extended Data Figure 5 | Distributions of polarization gradient at  
the domain wall in the presence of a nucleus. a, b, The polarization  
gradients (dPY/dY, a; dPZ/dZ, b) are highest at the boundary of the  
nucleus. The maximum polarization gradient is around 0.08 C m−2 Å−1,  

much smaller than the value estimated by the classical theories in ref. 15  
(0.25 C m−2 Å−1). This difference is due to the diffuse nature of the 
boundary. The total boundary charge (ρ1 +  ρ2 +  ρ3 +  ρ4) is zero.
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Extended Data Figure 6 | Results for the Miller–Weinreich model of 
nucleation on the PbTiO3 90° domain wall using various conditions 
for the interface boundary. a, Nucleus energy U as a function of Miller–
Weinreich nucleus area (al, given in terms of the number of unit cells (uc)) 
for the original Miller–Weinreich model (black) and Miller–Weinreich 
models with s =  0.41, fε =  1, Qtot ≠  0 and fc =  1 (red), s =  0.41, fε =  2, Qtot ≠  0 
and fc =  1 (green), s =  0.41, fε =  2, Qtot =  0 and fc =  1 (blue), s =  0.41, fε =  2, 

Qtot =  0 and fc =  1/2 (magenta), and s =  0.41, fε =  2, Qtot =  0 and fc =  1/3 
(cyan). Inset, zoomed-out view showing all the curves. b, Aspect ratio of the 
Miller–Weinreich nucleus (l*/a*) as a function of the ratio between σp and σw.  
The Miller–Weinreich assumption that l*  a* is not valid for realistic values 
of σp and σw. c, σp for different interface conditions. The actual σp is much 
smaller than the estimate used by Miller and Weinreich (MW; ref. 15).
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Extended Data Figure 7 | Results for the Miller–Weinreich model of 
nucleation on the PbTiO3 180° domain wall using various conditions 
for the interface boundary. a, Nucleus energy U as a function of Miller–
Weinreich nucleus area (al, given in terms of the number of unit cells (uc)) 
for the original Miller–Weinreich model (black) and Miller–Weinreich 
models with s =  0.41, fε =  1, Qtot ≠  0 and fc =  1 (red), s =  0.41, fε =  2,  

Qtot ≠  0 and fc =  1 (green), s =  0.41, fε =  2, Qtot =  0 and fc =  1 (blue), 
s =  0.41, fε =  2, Qtot =  0 and fc =  1/2 (magenta), and s =  0.41, fε =  2, Qtot =  0 
and fc =  1/3 (cyan). Inset, zoomed-out view showing all the curves.  
b, σp for different interface conditions. The actual σp is much smaller than 
the estimate used by Miller–Weinreich (MW; ref. 15).
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Extended Data Figure 8 | Test of domain-wall velocity (vx) convergence with supercell size. The colours of the domains in the bottom panels 
correspond to those in Extended Data Fig. 1. The error bars are standard deviations.
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